The Best Particulate Matter Air Purifiers & Testing Your Exposure Levels
Finally, my message is getting brighter.
In my first two blog posts on particulate matter I treated the topic of what particulate matter is and, the topic of the 10 most devastating health effects of particulate matter.
This blog post, however, considers the topic of lowering your particulate matter exposure and testing for levels in your environment. Even though the topic seems really simple, in reality, it's really intricate.
In fact, this blog post is almost 8,000 words long. I'll tell you all what you have to look for in an air purifier, how to test particulate matter levels with several meters and by reading maps about your environment, and give you the recommended air filters within different categories, such as budget, mid-range, and premium!
Curious?
Here we go...
And, if you don't know what particulate matter is or why it matters for your health, read part 1 and part 2 of this blog post series.
Testing Air Quality For Particulate Matter Levels
Observe on that map that particulate matter concentrations also vary widely across the globe.[145] Less densely populated areas in Western Europe are generally very safe. East and South Asia and sub-Saharan Africa are generally very much polluted.
Consider the following problem:
Most of the data that's collected on particulate matter concentrations are actually not coming from your house, the building you're working, or the train or road you are spending time at every morning.
The data on that map is often sourced from 5 or 10 blocks away from your home. Most people thus don't have any actual data on the PM2.5 or PM10 pollution at the locations they're spending most of their time.
Mapping Paticulate Matter Levels
Data on how polluted your location is are in fact very important.
Let me explain:
Let's say I'm living in Paris.
In that case, there might be tens of different particulate matter measurement systems placed around and outside the city that all yield different outcomes.
That sounds great, right?
Just observe what the measurement system three blocks away tells you, and you know how polluted your street is, right?
Wrong...
Particulate Matter Levels In Different Cities
There's sometimes a 10-fold particular matter difference between different places.
Don't believe me?
View the map of Paris below:
(again, you can observe the current air pollution levels around your location on this map.)
There's even a big difference between several places in the inner city.
Air pollution maps can only give you a very general impression of the particulate matter you're exposed to.
If you really want to know how much air pollution you're "ingesting" on a daily basis, you can thus not rely on the government's data--you have to take your own measurements instead.
And, no, I'm not selectively showing you cities to prove my point.
Here's the data on Mexico city on October 16th, 2018 (this blog was re-published on this website from an earlier blog!):
Again, more than a 10-fold difference in air pollution levels...
New York City?
An even bigger discrepancy:
Observe the 25-fold difference in exposure there. Of course, there are anomalies to that 10-fold difference observation.
Beijing is one example:
Unfortunately, it also seems that there's nowhere to hide in Beijing--but that's another topic I'll get back to later.
Please observe that not all places in the city are measured in terms of air quality.
If you want real-time data on how you are doing in your house, office, during transit, or when you're spending time in the park, you thus need to measure air pollution levels yourself.
The seasons also affect how much particulate matter hangs around in the air. Rain does the same thing.
The air quality map can give me a totally different outcome tomorrow compared to what it's telling me today. If a factory shuts down tomorrow, I may be exposed to 70% less particulate matter compared to today.
Circumstances thus matter...
Why You Need To Actually Test Your Air Pollutant Exposure Levels
Bottom line: if you're worried about air pollution - and specifically particulate matter - in your environment then you cannot exclusively rely on maps.
(Neither can you rely on the government's solutions.)
One common government recommendation is to tell people not to go outside when air pollution levels are too strong. To me that's a very imperfect solution because you're no longer able to expose your eyes and skin to sunlight - which I consider a prerequisite for optimal health.
The solution is more complicated - stay with me to find out why in section seven...
Another important point:
Where You Live Matters
Local sources of particulate matter pollution are generally more damaging than what you'd get exposed to from far away.[29]
Remember I told you that some of particulate matter pollution could originate from a desert? While you may get exposed to some particulate matter from far away, most is actually sourced from your direct environment.
Of course, even though smaller types of particulate matter such as PM2.5 and PM0.1 can travel farther, but particulate matter from nearby busy streets, heavy industry, and airports are most killing...
Airports can double particulate matter concentrations for miles
If you "cannot move" due to air pollution because you're stuck to a given city (due to your job for example), think again.
Remember that air pollution levels can vary 10-fold across different areas in the same city.
Moving out of the city center towards the periphery can thus have a dramatic impact on the particular matter you're exposed to on a daily basis.
(And, often the city center might be cleaner because there are no highways nearby and car traffic might be limited.)
Living very close to a busy road, for example, dangerously increases your overall mortality risk.[140] That statement does not just reflect my opinion--it's a solid fact.
The Most Important Particulate Matter Exposure Sources
So let's consider a few case studies of exactly where particulate matter originates from.
Consider the deaths that are attributable to just PM2.5 in China in 2016:[207]
- Industrial coal for industrial processes: 155,000
- Transportation: 137,000
- The residential burning of biomass: 136,000
- Non-coal industry: 95,000
- Coal for energy generation: 87,000
- Intentionally-created outdoor fires: 70,000
- Residential coal burning in homes: 41,000
That's 721,000 people who've lost their lives due to just PM2.5 in a single year in China. China's neighboring country, India, counted 666,000 deaths from PM2.5 that year.
Significance Of These Statistics
What should these statistics teach you?
Traffic is not the only particulate matter source that should worry you:
If your neighbors are burning wood or coal to generate energy, and the smoke is directed your way very frequently, then you're going to suffer the consequences.
If you're living next to a coal power plant, you may want to move to the other part of the town if possible, so that you can still keep your job in that same city.
But I'd like to go one step further:
Buying An Air Quality Detector
An "air quality detector" is a great tool to measure PM2.5 and PM10 levels in your direct environment:
Again, measuring your air quality is highly recommended if you live in a polluted area. You'll get real-time feedback on how good (or bad) the air quality at your location is.
The air quality detector listed above costs $129, and measures both PM2.5 and PM10 (and additionally, formaldehyde and "VOCs" other air pollutants). CO2 levels are also measured by that monitor.
Budget Particulate Matter Detector
If you want a less expensive (and less all-around) model, consider this budget option for a particulate matter quality detector:This budget device only measures PM2.5, which is more important than PM10.
On another note:
Unfortunately, I've not seen any commercial grade affordable PM0.1 air quality detectors.
The average person does not need to buy that meter either...
If you don't have an air purifier yet, then the main reason you'll want to measure the air quality is getting a general impression of the PM2.5 levels in the location you're spending time at (over time).
(The topic of air purifiers is treated in the next section)
If you do have an air purifier, then dropping levels of PM2.5 with that air purifier will always be combined with even further lowering of PM0.1, as air purifiers capture the latter particles roughly equally well as the former.
It's also very rare to have extremely high PM2.5 particle levels while having very low PM0.1 levels--PM2.5 particles can thus act as a good benchmark for PM0.1.
(PM0.3-sized particles are the most difficult to capture for air purifiers, moreover, so both PM2.5 and PM0.1 are cleaned pretty effectively with a high-quality product.)
Understanding Priorities In Testing & Fixing
Bottom line: if you're living in the civilized world and the air quality map shows a trend of lower air quality in your environment, it's time to acquire more data on your location.
When measuring the PM2.5 and PM10 levels in the environment you're spending time daily, make sure to collect data over longer periods of time.
Of course, if you measure dangerous levels for several days, you'll already know what you need to know. In some instances, however, high PM2.5 might, for example, be harder to detect:
Your daily transit, for example, may only take an hour but expose you to 90% of the particulate matter that day. Neighbors burning wood next door may also only be detectable at certain times...
And if you do detect high levels of particulate matter in your home or office?
In that case, read the next section on using air purifiers...
Want to know what to do right now to decrease your risks?
Particulate Matter Air Filter & Purifier Guide: Budget & Mid-Range Options
In this section I'll cover the most important guidelines for using air purifiers to reduce particulate matter in your environment - I'll also give you the best product recommendations for both the budget and mid-range.
(Premium style options are covere in the next section!)
Keep in mind whether you need an air purifier really depends on your circumstances.
Not everyone needs an air purifier.
And you may also be thinking: "great, I've already decided to get a high-quality air purifier now, so how long will it take before my health improves?"
Why Air Filters & Air Purifiers Are A Game Changer
Finally, I can talk about the bright side of my message: health improvements due to lowering the amount of particulate matter you're exposed to happen almost immediately.
Of course, the damage that has been accumulating for decades cannot be undone in a few weeks or months.
Nonetheless, it's better to start cleaning the air today rather than tomorrow if you're exposed to lots of air pollution.
Blood pressure and stress hormone levels will drop off immediately after you start purifying your air, for example...
What Is An Air Purifier?
So let's begin with the basic questions: "what's an air purifier?"
Simple:
Air purifiers are devices which filter the air that circulates through them. These devices contain two main components that are important to remember: 1) a motor; 2) a filter.
The motor in the air purifier makes sure that air moves through the filter. The filter then captures any harmful substances and prevents these substances from re-circulating through the air.
The dirty air thus enters the air purifier, and clean air exists the purifier - if all goes well...
Not all air purifiers are created equal though.
The more air moved through the filter by the motor, the higher your energy costs will be. More restrictive filters (i.e., the more particles trapped by the air purifier) will increase energy costs also.
You, therefore, don't want just any air purifier: you'll want a high-quality product:
What Are HEPA Filter?
Let me introduce you to "HEPA" filters - an abbreviation for "High-Efficiency Particulate Air" filter.
In general, HEPA filters are considered the golden standard for consumer air purifiers. HEPA filters basically entail that lots of particles are trapped by such a filter...
Next to regular HEPA filters, "true HEPA" filters also exist. "True HEPA" generally filter the air better than regular HEPA filters.
A true HEPA filter removes 99,97% of all particles bigger than 0.3 micrometers. Only 0.03% of particles bigger than 0.3 micrometers are thus re-emitted into the air.
In other words:
If 100.000 particles enter the filter, only 30 will come out "alive" and are re-introduced into the air.
What Particles Do HEPA Filters Remove?
Let's consider which types of particles are specifically removed by true HEPA filters.
In most cases, true HEPA filters are most effective with larger (PM10) and much smaller (PM0.1) particles, and least effective around the 0.3-micrometer particle-size range. In the least effective range, 99,97% of particles are thus still removed from the air.
You'll thus want a "true HEPA filter" instead of a HEPA filter, as the latter is not necessarily standardized to filter at maximum efficiency.
(Don't be fooled by advertisements that filters are "highly efficient" or "HEPA-like", as these air purifiers almost never live up to expectations and use deceptive marketing.)
Additionally, filtration "efficiency" is not the exclusively important parameter to look out for when buying an air purifier.
Why?
Well:
Why Quality Matters When Buying An Air Purifier
The air purifier you're buying needs to be effective.
If you've got a 300 square feet room and you place a true HEPA air purifier in that room which has a maximum capacity to filter 150 square feet, the filtration process is not going to be optimal.
Let me explain...
Remember the motor component of an air purifier?
Without a strong motor, an air purifier cannot move enough air around in a room, and cannot effectively clean that air.
Of course, true HEPA filters need to be functioning properly in order to work correctly. If your filter has defects, filtering will not be effective nor efficient.
Additionally, some companies claim that true HEPA filters cannot capture really small particles such as PM0.1.
To be honest, that's bogus.
Again, true HEPA filters do the worst in particle ranges of 0.3 micrometers. Both above and below the 0.3-micrometer size, true HEPA filters actually entrap more air pollutants such as PM2.5.
What Are True HEPA Filters?
Keep in mind that this blog post is specialized towards the topic of particulate matter, and I'm mostly recommending true HEPA filters to filter that substance.
Of course, (true) HEPA filters filter many other toxins from the air:
- Dust, both heavy and settling
- Soot, which results from incompletely burned carbon, often originating from wood, coal, or petroleum
- Smog
- Allergens
- Pollen
- Viruses, bacteria, and mold
The Limits Of HEPA: What Substances Do HEPA Filters Not Filter Correctly?
Some substances are not filtered with a (true) HEPA filter, such as Volatile Organic Compounds (VOCs). Smoke from tobacco, oil, and wildfires (insofar they are not solid or liquid), and odors can generally not be removed by (true) HEPA filters.
The simple reason is that air purifiers are made to move air through them, and gases can thus also move through the filter.
For your air purifier to also stop gases, you thus need an additional filter to remove gases, such as an "activated carbon filter".
Fortunately, most modern air purifiers actually contain additional filters to remove gasses.
I'm just mentioning this fact so that you're not under the impression that just buying a true HEPA filter is always sufficient for all circumstances.
The problem with carbon filters is that they're of different quality. Not all carbon filters are great at filtering out most gases.
Again, you'll want a high-quality product...
Oh yeah, one more thing:
Correctly Using An Air Purifier
You have to keep in mind that air purifiers are not all-powerful (or "omnipotent").
If you're keeping your windows opened up in a polluted environment, no amount of air purifying is ever going to keep your environment clean.
If you've got 3 dogs and you're cooking indoor in a small 160-feet apartment, one high-quality purifier might not be enough either.
On the other hand:
If you're sleeping in your small bedroom in your house in the woods that's located in the middle of nowhere, an air purifier that cleans 1300 square feet is overkill - you'll waste your money.
The goal is thus to find the air purifier that's right for you...
(Advanced explanation: the filters inside a HEPA purifier are often made of fiberglass or synthetic nonwoven fibers). The former demands an increased air pressure compared to the latter, and therefore filters more particles from the air. On the carbon filters for gases: some gases such as formaldehyde or methane cannot be properly filtered by carbon, and thus most modern air purifiers cannot capture all air pollutants.
My Recommendation
So, the million dollar question (or rather $100-800 question) is this: "what air purifier would you recommend?"
I'll tell you in a second...
Let me first consider a problem:
The problem in answering that aforementioned question is that I don't have a team of several people and a laboratory to test many of high-quality air purifiers for several days.
And yet, I can make a good air purifier recommendation to you?
How?
By combining the data of several great air purifier tests that have been carried out in the last year - I've included these tests if and only if these tests have described their testing methodology well.
I've synthesized the data of the following air purifier reviews of the last years (2017-2018):
- Thespruce.com, who buy air purifiers themselves (and thus do not receive them as a gift), update their website daily, and test products in many different circumstances.
- Thewirecutter.com, which is part of the New York Times, is reader supported and has spent hundreds of hours comparing different air purifiers. Purification speed and the ability to deal with larger rooms was one of the key metrics included in their test.
- Reviews.com, who put a very heavy emphasis on air purification (as opposed to energy efficiency or air purifier noise levels), and have tested 80+ different products.
- Homeairguides.com, a dedicated website for reviewing air purification systems that has existed for years.
- Pureair.com, another website dedicated to exclusively reviewing air purifiers.
- Yourbestdigs.com, who've carried out independent lab tests with several air purifiers and also consulted with air quality experts.
(Again, this blog post was created before its publication in 2021 on the Alexfergus website)
Air Purifier Testing Methodology
From each independent test I extracted the following data:
The number 1 product choice was allocated 10 points, their number 2 choice got 9 points, their number 3 choice 8 points, and so forth. I also included the reasons for choosing the different products in the eventual product analysis.
Some tests did not contain 10 different products, but I've nevertheless included as many products were available. In other words, if only 4-5 products were displayed, I've allocated points to these 4-5 products.
My recommendations are based on adding up the point allocated to each individual air purifier.
The top-3 air purifiers have been listed below (with their final scores).
One remark:
All air purifiers in consideration have (true) HEPA filters, and are thus capable of filtering out particulate matter. Particulate matter is, of course, the reason you're reading this blog post in the first place.
So what's the outcome?
Here we go:
(This list was last updated on October 24th, 2018.)
Let's consider the top 3 products:
Taking first place, the Coway AP-1512HH, which scores 40 points in total:
This air purifier can improve air quality in rooms up to 530 square feet (~50 square meters).
This device costs $205 (USD) at this point in time and is available in black and white colors to match your interior design. The design is also somewhat smaller than the other two air purifiers coming in at the second and third place.
The Coway has one big advantage: both power consumption and filter replacement are relatively inexpensive - at a low ~$45. The AP-1512HH purifier is also paired with an "Energy Star-rating".
Sure, $205 is a lot of money for some people, but it's your best bet for improving indoor air quality.
This air purifier packs quite the punch for a $200 product, with four filtering mechanism: 1) an easily cleanable pre-filter that removes larger particles such as dust; 2) an odor filter; 3) a true HEPA filter; 4) an ionizer (emitting negative ions into the air--dust or allergens are positively charged, which are purported to be offset these negative ions).
Ionization, however, may prove to be pseudo-scientific and is considered and its benefits are unproven at this point. Fortunately, the ionizer can be turned off, which also inhibits (possible) ozone being emitted from this air purifier.
Fortunately, the California Air Resources Board has specifically tested the ozone emission of this air purifier and was tested at 0.050 parts per million, which is very low.[254]
Another remarkable upside is that the Coway AP-1512HH keeps filtering the air quite well year-after-year, even though the efficiency of most air purifiers degrades over time.
The noise of this air purifier is low, but there's one clear downside: its LED lights shine bright, a topic I'll come back to later.
Overall, it's hard to overestimate how good of an air purifier this is for a $200 price. The Coway AP-1512HH easily outperforms many air purifier that are two or three times as expensive, while also costing less in terms of upkeep.
Coming in at second place is the Winix 5300 or 5500 at 36 points:
Different air purifier consumer reports used different versions of the Winix, but as these devices are almost the same, I've rated the Winix 5300 and 5500 as if they were the "same device".
(The Winix 5300 misses some options which the Winix 5500 does include.)
Rating these very similar devices separately would make them end up outside the top three, and studies only tested either of them.
So why the Winix 5500?
First of all, this air purifier can filter rooms up to 360 square feet (or 33 m2). The Winix also automatically tones down its filtering intensity when the air gets cleaner - saving energy that way.
Secondly, this air purifier contains a carbon filter in addition to a true HEPA filter, to remove odors from the air. Carbon filters need to be replaced every 6 months.
Thirdly, a big upside about the Winix-5500 is that it only costs $145. The replacement filters are more expensive, however, than the number one air purifier - coming in at around $60.
Over time, the Winix can thus become more expensive than the Coway AP-1512HH, even though you're paying less up front.
The LED lights on this Winix air purifier can be dimmed, which is the fourth plus.
So why does the Winix take second place instead of first place? Some independent tests rate the filtrating rate of the Winix 5500 lower than the number one spot, the Coway AP-1512HH--although others disagree by grading them as having similar capacities.
Compared to the Coway AP-1512HH, the filters of the Winix 5500 are very easy to replace. If you're totally "non-tech-savvy", then opt for the Winix instead of the Coway AP-1512HH.
The pre-filter of both air purifiers need to be removed and cleaned every two weeks, so keep that fact in mind.
(Pre-filters spare the main HEPA filter - which is more expensive to replace - and the inclusion of a pre-filter is thus economical.)
Taking third place is the Honeywell HPA300, with 27 points:
At the time of writing, this air purifier is priced just below $200 - but nevertheless filters an area of up to 465 square feet (43 square meters).
The Honeywell air purifier contains two different filters - the most important types - which are a carbon pre-filter for gases, and a true HEPA filter (for our much-hated particulate matter).
This air purifier is specifically built towards reducing allergens - that fact alone might place this device at your first place if you've got problems in that health domain.
Energy costs of this air purifier are low, and the device has an "Energy Star-rating."
One downside of this air purifier is its looks.
New HEPA filters are also more expensive than the number one rated device above (averaging $60). Honeywell filters need to be replaced every 6 months with normal use.
A last upside: the air purifier is pretty quiet, making this air purifier ideal for a mid to large-size bedroom.
The best low-budget option - when you only have like $100 to spend - is the Germguardian, with 26 points.
Keep in mind that this device is best used for smaller rooms - costing only $105.
This air purifier filters areas up to 200 square feet (18 square meters).
In addition to trapping particulate matter through the HEPA filter, odors are also captured and germs are killed through an "ultraviolet C" air sterilizer. Filters need to be replaced every 6-8 months.
The upside is that this smaller air purifier is less noisy than the air purifiers in the number one and two positions, and is thus ideal for bedroom use. The downside for bedroom use, however, is that the LED lights are harder to dim.
Tip: another great location to place this air purifier is close to your desk if you're working in an office. A Germguardian can keep the air in your immediate vicinity clean.
Filter replacement costs $35, and the ultraviolet C air sterilizer costs 15 bucks to replace. One downside over the Coway AP-1512HH is that the Germguardian can become more expensive over a longer period of time due to replacement and electricity costs.
Air Purifiers For Bigger Rooms
Additionally, if you've got very big rooms, such as an office floor, I would not recommend the products I've listed above.
Instead, buy an air purifier that's specifically built towards cleaning much bigger rooms, such as the Alen Breathesmart or the Coway Airmega-400.
Both are great options and were rated very highly in the air purifier reviews I've synthesized.
Alen BreatheSmart 75i
Coway Airmega 400
These two air purifiers that are targeted towards larger rooms have been tested to 1,300 to 1,500 square feet rooms, or 120 to 140 square meters. Even in such large rooms, they can filter the air every 30 minutes.
Of course, their pricing reflects this increased filtering capacity, ranging from $550 to $750.
Let's review the upsides of the Alen BreatheSmart 75i first:
- Lifetime guarantee
- Energy efficient
- The sound that's generated by this device is "pink noise", which actually helps you sleep
- extremely quiet. If you're very sensitive to noise pollution, this air purifier will get more attractive for you
- Available in an insane amount of customization colors to match our interior
- Comes in two versions, either specialized towards smoke, cooking odor, and VOCs (from furniture, for example), or specialized towards allergies and dust instead. For combating particulate matter, the latter option is better.
How about the Coway Airmega 400?
- Energy efficient
- Available in black and white model
- Less expensive than the Alen Breathesmart while also cleaning more air (1500 square ft).
Downside? You can control the Airmega 400S version with WiFi. Solution? Always buy the regular Airmega 400, not the S version. The regular Airmega does not have WiFi connectivity.
The "S" signifies smart, which is usually pretty dumb considering that the amount of wireless radiation is growing exponentially and at a very harmful rate.
Please remember that air purifiers that are targeted towards bigger rooms are also bigger themselves, and will be highly visible when you place them in a small living room.
Disclaimer: keep your body at a 6 feet (roughly 2 meter) distance from the air purifier to prevent excessively exposing yourself to electromagnetic fields. So no placing an air purifier directly next to your bed.
Remark: please don't buy an air purifier that's targeted towards office use for your small condo or your bedroom, as you're literally wasting your money by that course of action.
Moreover, bigger air purifiers don't just cost more money for your first purchase, but their energy demand and filter replacements are also more expensive.
The reason you're spending much more on their energy cost is that a more powerful motor is necessary for such an air purifier to clean an entire office floor.
One legitimate reason to buy a much more expensive air purifier is if you have lots of issues with your airways, such as asthma or extreme allergies.
Another reason to go for maximum air purification is if you've got heart, lung or brain disorder--in an earlier section, I've demonstrated that particulate matter contributes to and even causes such diseases.
If you've got lung issues, for example, a 90% instead of 70% reduction in particulate matter in your living room can make all the difference in the world - especially over time.
Better be safe than sorry in such instances, and spend $750 to clean the air in your house...
Note: none of the air purifiers listed above emit serious amounts of ozone.[249; 250; 251; 252; 253; 254]
Ozone is an air pollutant in and of itself. You can get airway irritation and lung problems from ozone, directly countering the reason you're buying an air purifier in the first place.
Some previous generation air purifiers did in fact emit ozone. Air purifiers emitting ozone is thus sheer lunacy.
(Nerds: please keep in mind that I'm not talking about ozone therapy here, which may or may not have merit--I've not looked at the evidence thoroughly there, and cannot judge.)
Keep in mind that your air purifier filters absolutely need to be replaced over time.
Not replacing filters is not an option...
Companies will often tell you how long a filter can last. There's a good reason a "shelf-life" is allocated to filters, as they can get stuffed over time so that less and less air is let through them.
If you fail to timely replace carbon filters that remove gases from the air, these toxic gases can even be re-released into your environment.
Bottom line: follow the instructions for your product.
Air purification often times do not get the intended effects because people think their filters can last for two years, even though the company supplying the air purifier recommends replacement every 6 months.
One more thing:
One downside of many air purifiers is that they still contain LED lights that emit blue light.
Blue light will inhibit production of the "melatonin" hormone which aids your sleep quality. It's, therefore, best to put a piece of cloth over the display of the air purifier when you're not looking at the current status (e.g. the current pollution rate in the room).
Another method of avoiding the blue light is to place the air purifier behind a closet, so that blue light is not projected at you.
Don't let your sleep quality be ruined because you're staring at blue light at night
Now, a very simple question remains: "should everyone buy an air purifier?"
The answer is a categorical "no".
Whether you would benefit from an air purifier depends on your personal context. Of course, if you're spending lots of time in one location where particulate matter levels are very high, then I would recommend an air purifier almost regardless of circumstances.
But if you've just got dust mites in your house, I would first recommend you'd change the carpeting and curtains.
If you're exposed to particulate matter in your car 12 hours a day, and only exposed to particulate matter in that situation, putting an air purifier in your home won't help either - that point should be self-evident.
In what circumstances would I recommend an air purifier?
Well, the most important instance is if you're 1) spending lots of time each week in the same location; 2) if that location has high particulate matter (or air pollution) levels.
You might also have seen portable air purifiers being sold online.
My opinion here:
I cannot recommend any portable air purifier almost regardless of circumstance with a clear conscience.
Why?
Le'ts go through severla popular models:
With the hOmeLabs 3 in 1 Air Purifier with HEPA it's impossible to turn off blue light. The product is thus unusable in your bedroom at night. Remember that blue light after sunset disrupts your sleep.
The hOmeLabs may be usable during the daytime though, especially during transit. If you're spending lots of time in one location, I'd opt for one of the earlier static $100-$800 static models I've mentioned earlier.
Another popular portable air purifier, the "Wynd", seems to necessitate an internet connection and thus relies on wireless radiation that you don't want to be putting out when you use a portable air purifier next to your bed or at your desk.
Thus: avoid the "Wynd"...
The next and last "portable" air purifier, the Levoit LV-H132, needs to be connected to the power grid and weighs almost 7 pounds. The upside of this air purifier is that doesn't emit electromagnetic radiator and that its light can be turned off.
Nevertheless, because the Levoit product is pretty heavy, it's hard to use as a portable air purifier.
Most of the smaller air purifiers are also not tested for ozone emissions, which is another red flag. I'll only add a recommendation in this section once a product does not actively harm your health.
There's one last mater I need to consider in this section - which relates to a question many people actually have:
Studies Showing The Effectiveness Of Air Purifiers
"So how do you know for sure that (true) HEPA air purifiers are actually working?"[213; 214; 215; 227; 229; 247; 257; 261; 262; 263; 269]
Great question...
This is a question that actually pops up over and over again...
Short answer: because many scientific studies have actually investigated air purifiers and demonstrated they do work.
Insane claims can actually be found on the internet that HEPA filters don't actually improve your overall health--such stupid claims can be easily debunked.
Let's look at some examples demonstrating that HEPA filters work by looking at several scientific studies:
- When mothers used HEPA filters during pregnancy, babies who were born at term had higher birth weights.
Another group of pregnant women who used a portable HEPA filter ended up with lower toxins (cadmium) in their blood.
- Allergies?
Allergens in the bed and on the floor are reduced with HEPA filtering. Cat allergen levels are also reduced by air purification, although symptoms of people with cat allergies did not significantly decrease.
Nasal allergies do decrease in intensity by using HEPA filters though.
- In the case of asthma, there is some conflict of evidence, especially regarding earlier studies. Newer studies do demonstrate that beneficial effects of HEPA filters for asthma exist.
- Then there's the subject of particulate matter.
First example:
When children with asthma got an air purifier in their home that reduced particulate matter, their symptoms improved. The group that received a placebo (and thus a non-working HEPA filter) experienced a worsening of their symptoms.
Unfortunately, this was a very small scale study.
Indoor particulate matter levels were also reduced by 43%. While 43% might not sound perfect, the long-term effects of that 43% on your health can be dramatic.
And by the way: in the study, one HEPA filter was placed in a Cali home. I think with several HEPA filters in such homes you'd be able to get a 90% reduction or more - these homes are big...
Second study example:
Indoor particulate matter concentrations were reduced from an average of 49 to just 9 micrograms per m3 with an air purifier - that's a five-fold reduction of particulate matter right there.
Third example:
In an environment with 15 micrograms per m3, which is not high under international standards, high-efficiency filtration reduced particulate latter to 8 micrograms per m3 - thus halving the level.
Results?
Systolic blood pressure - meaning the pressure in the vessels during the period in which the heart is beating - was reduced with 3 points.
Fourth example:
Having a HEPA filter in your truck can reduce PM2.5 concentrations by 37%, even though new particulate matter is continually added back to the truck because drivers are continually on the road.
Fifth: staying indoor and running a HEPA filter can even reduce indoor toxins (as long as the windows are closed) when forest fires are raging.
Enough examples...
Overall, 80-90% of studies show positive effects of HEPA filters. Newer studies are generally more positive towards HEPA filters - because of technology improvements.
Concluding that modern HEPA filters don't work is like concluding that condoms don't function today because anti-conception was so bad in the 19th century...
Don't make that (logical) mistake...
The bottom line is that HEPA filters do work for purifying the air, and specifically for reducing particulate matter.
50-90% reductions of PM2.5 are not uncommon.
Health Effects Demonstrated In Particulate Matter Studies
Now, are the health effects of using HEPA filters indoor enormous?
Unfortunately, there are not that many studies that investigate the lowering of particulate matter by using HEPA filters while also measuring direct disease outcomes (such as whether participants have a stroke or heart attack).
There's indirect proof though - if you want to be certain that lowering particulate matter helps.
What proof?
Large-scale studies that tracked the decline in particulate matter levels in the Western world after governments began legislating actually demonstrate that lower PM10 levels lead to better health.[311; 312; 313]
Let me give you some examples:
- Less PM10 in the air caused lung function to decline less rapidly with aging.
- In Switzerland, reducing outdoor PM10 concentrations in the 1990s led to less bronchitis, coughing at night, colds, and eye irritation in children. Sneezing and asthma intensities were not reduced though.
- In Swiss adults in roughly the same period, (chronic) coughing, wheezing, and breathlessness were reduced.
- If you were living in the US in the 90s, a reduction of PM10 also caused a reduction in overall mortality.
To my knowledge, no large-scale studies of PM2.5 have been conducted because PM2.5's effects have not been measured for such a long period of time.
The bottom line is this:
If reducing outdoor air PM10 pollution by 10-20% already increases your health, then 50-80% reductions of PM2.5 and PM0.1 will certainly help your health.
Clean mountain air: indispensable.
Air Purifiers And Noise Pollution
There's one downside about air purifiers I should inform you about: noise pollution.
(If you'd like to know more about noise pollution read my extensive guide about that topic.)
The sound levels emitted by air purifiers can amount to somewhat more than 50 decibels.
To give you a frame of reference:
50 decibels has the loudness levels of a regular conversation, of background music, a dishwasher, or very light traffic outside your house.
(If you're further removed from the air purifier, the loudness will become less intense of course.)
The problem with 50 decibels?
When you're exposed to that 50 decibel sound level during the nighttime its already considered noise - 40 decibels is considered the safe limit by the European Union for nighttime exposure levels.
Even that European Union research is not as strict as it should be though.
Why?
Just 30-40 decibels can negatively affect sleep quality.
For that reason, I'm a big fan of the Alen BreatheSmart 75i as a high-end option - even if you don't have a huge apartment.
Only buy that BreatheSmart if you've got money to spare and think the lowered noise outweighs the decrease in sleep quality. On the lower settings, the Breathesmart remains under the 30-decibel threshold for optimizing sleep quality.
Remember the Breathesmart filters up to 1300 square feet. As an alternative, the same company also offers:
Avoiding excessive noise is always best for your health.
Why You Need To Monitor Particulate matter Levels
Lastly, the best way to make sure your house or office is low in particulate matter is to combine an air purifier with measurement.
If particulate matter levels go down, you can simply conclude that your health will improve over time.
That's it...
Everything you need to know about using air purifiers to reduce particulate matter. The next step is to look at other strategies you can use to lower particulate matter in your environment.
Advanced explanation: keep in mind that the studies I cite above do not just treat the topic of particulate matter, but are also based on other types of air pollution such as pet allergens or pollen. The main claim, that HEPA filters specifically and air purification in general work, stands.
There are also good explanations why HEPA filters do not demonstrate enormous health benefits (yet). I'll give four reasons. The first reason is that long-term studies inquiring into the health benefits of HEPA filters are rare. Remember that air pollution damages health over time. Just a few days in a polluted city is not going to make you sick--a few years will damage you though. The second reason is that many studies show that participants don't always activate their air purifier when they ought to. One reason can be that study participants themselves don't believe air purification can really solve their problems, and thus even though the placebo group does not activate their sham air purifier either, HEPA filters' true effect size is always underestimated. The third reason is that participants don't always maintain their air purifiers correctly so that the positive health effects drop down considerably over time. Fourthly and lastly, air purification technology has developed over time, especially the last two decades--studies that were more negative in the year 2000 may be invalid as of today, as better air purifiers may show results where older models did not. Overall, the future will probably demonstrate that HEPA filters do have big health benefits
The Best Premium-Quality Air Purifier On The Market Right Now
I'm not going to type too much here to regurgitate an argument that Alex has already made in the past.
But, if you really want maximum protection in any particular room, then I recommend reading up on Alex's article EnviroKlenz Mobile Air Purifier System Review: How Does It Compare?
Basically, if you really want the best filter out there right now, get this one. The unit does set you back to ~$700 for a 60-meter room, or about 600 square foot. So, this unit is more expensive than any of the previous options, but, well worth it in my opinion if you sleep or work in the same room every night and you're exposed to toxic air.
Again, chek Alex's perfect article and his experience after using this product for a few months here: EnviroKlenz Mobile Air Purifier System Review: How Does It Compare?
Finishing Thoughts: An Air Filter Alone Already Lowers Particulate Matter Exposure By 90-95%!
I hope you get it!
Afer my first two very depressing blogs about particulate matter, you now know you've got good options controlling your exposure levels to particulate matter.
The place that people tend to spend most time anyway, and the place that's commonly the most polluted - indoor environments - is also the place that you can most easily control.
of course, if you're working outdoor all the time, in a polluted place, then there's another issue. You can still control your exposure while you're at home, and that will certainly help, but if you're breathing in toxic air 24/7 in a big city, I would carefully consider my options.
Slowly losing your health over the course of years is perhaps not worth it...
Items Mentioned:
- Temtop air quality detector, including VOCs and particulate matter.
- Budget, particulate matter only detector (no VOCs)
- Coway AP-1512HH, best budget air purifier
- Winix 5300 or 5500, second-best budget air purifier
- Honeywell HPA300, third-best budget air purifier
- Germguardian, around $100, only for small rooms, if you're on a very low budget
- Alen BreatheSmart 75i, mid-range option for bigger rooms
- EnviroKlenz Mobile Air System, high-end super-premium option if you want the best fiiltration.
This is a post by Bart Wolbers. Bart finished degrees in Physical Therapy (B), Philosophy (BA and MA), Philosophy of Science and Technology (MS - with distinction), and Clinical Health Science (MS), and is currently a health consultant at Alexfergus.com.
Found This Article Interesting? Then You Might Like:
What Is Self-Esteem: Definition, The Science & Can It Change?
Zinc's Essential Role In Human Health & Evolution (+Huge Benefits)
What Is Noise Pollution & Why Does It Devastate Your Health?
What Is Chronic Stress? Why You Need To Master Your Thinking Habits
What Is Dopamine? Understanding Dopamine's Colossal Role In Health
[1] Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol. 2012 Jun;8(2):166-75. doi: 10.1007/s13181-011-0203-1.
[2] World Health Organization. Burden of disease from Ambient Air Pollution for 2012.
[3] World Health Organization. Burden of disease from ambient air pollution for 2016; Version 5 May 2018.
[4] Cohen AJ, Ross Anderson H, ... Smith K. The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A. 2005 Jul 9-23;68(13-14):1301-7.
[5] EPA. Air Quality Trends. Air Quality - National Summary.
[6] Europoean Environmental Agency. EEA Report No 13/2017.
[7] Baldacci S, Maio S, ... HEALS Study. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir Med. 2015 Sep;109(9):1089-104. doi: 10.1016/j.rmed.2015.05.017. Epub 2015 May 22.
[8] Zahradnik E, Raulf M. Animal allergens and their presence in the environment.Front Immunol. 2014 Mar 3;5:76. doi: 10.3389/fimmu.2014.00076. eCollection 2014.
[9] Salo PM, Zeldin DC. Does exposure to cats and dogs decrease the risk of allergic sensitization and disease? J Allergy Clin Immunol. 2009 Oct;124(4):751-2. doi: 10.1016/j.jaci.2009.08.012.
[10] Ownby D, Johnson CC. Recent Understandings of Pet Allergies. F1000Res. 2016 Jan 27;5. pii: F1000 Faculty Rev-108. doi: 10.12688/f1000research.7044.1. eCollection 2016.
[11] Kankaria A, Nongkynrih B, Gupta SK. Indoor air pollution in India: implications on health and its control. Indian J Community Med. 2014 Oct;39(4):203-7. doi: 10.4103/0970-0218.143019.
[12] Dales R, Liu L, Wheeler AJ, Gilbert NL. Quality of indoor residential air and health. CMAJ. 2008 Jul 15;179(2):147-52. doi: 10.1503/cmaj.070359.
[13] Nemery B, Hoet PH, Nemmar A. The Meuse Valley fog of 1930: an air pollution disaster. Lancet. 2001 Mar 3;357(9257):704-8.
[14] Bell ML, Davis DL, Fletcher T. A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ Health Perspect. 2004 Jan;112(1):6-8.
[15] Lowsen DH, Conway GA. Air Pollution in Major Chinese Cities: Some Progress, But Much More to Do. J Environ Prot (Irvine, Calif). 2016 Dec;7(13):2081-2094. doi: 10.4236/jep.2016.713162. Epub 2016 Dec 29.
[16] Weinhold B. EPA proposes tighter particulate air pollution standards. Environ Health Perspect. 2012 Sep;120(9):A348-9.
[17] EPA. National Ambient Air Quality Standards for Particulate Matter; Proposed Rule. Fed Reg 77(126):38889-39055 (2012)
[18] EPA. National Ambient Air Quality Standards, NAAQS Table.
[19] European Commission. Air Quality Standards.
[20] European Commission. Council Directive 1999/30/EC.
[21] European Commission. Council Directive 2008/50/EC.
[22] World Health Organization. Concentrations of fine particulate matter (PM2.5).
[23] World Health Organization. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. 2005.
[24] Rawls J. A Theory Of Justice. First ed. Belknap 1971.
[25] Locke J. Second Treatise on Government, 1689.
[26] Mill JS. On Liberty, 1859.
[27] Rothbard M. Egalitarianism as a Revolt Against Nature and Other Essays. 1963
[28] World Health Organization Europe. Health Effects Of Particulate Matter. Policy implications for countries in eastern Europe, Caucasus and central Asia.
[29] Report of a WHO Workshop. Health relevance of particulate matter from various sources. Copenhagen, WHO Regional Office for Europe, 2007.
[30] WHO Europe. Health risks of particulate matter from long-range transboundary air pollution. Joint WHO / Convention Task Force on the Health Aspects of Air Pollution. E88189 2006.
[31] Zeka A, Zanobetti A, Schwartz J. Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occup Environ Med. 2005 Oct;62(10):718-25.
[32] Achilleos S, Kioumourtzoglou MA,... Papatheodorou SI. Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ Int. 2017 Dec;109:89-100. doi: 10.1016/j.envint.2017.09.010. Epub 2017 Oct 5.
[33] Atkinson RW, Mills IC, Walton HA, Anderson HR. Fine particle components and health--a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J Expo Sci Environ Epidemiol. 2015 Mar-Apr;25(2):208-14. doi: 10.1038/jes.2014.63. Epub 2014 Sep 17.
[34] Kloog I, Ridgway B, ... Schwartz JD. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models. Epidemiology. 2013 Jul;24(4):555-61. doi: 10.1097/EDE.0b013e318294beaa.
[35] Blount RJ, Pascopella L, ... Nahid P. Traffic-Related Air Pollution and All-Cause Mortality during Tuberculosis Treatment in California. Environ Health Perspect. 2017 Sep 29;125(9):097026. doi: 10.1289/EHP1699.
[36] Mills IC, Atkinson RW, ... Strachan DP. Distinguishing the associations between daily mortality and hospital admissions and nitrogen dioxide from those of particulate matter: a systematic review and meta-analysis. BMJ Open. 2016 Jul 21;6(7):e010751. doi: 10.1136/bmjopen-2015-010751.
[37] Franklin M, Zeka A, Schwartz J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. Journal of Exposure Science and Environmental Epidemiology volume 17, 2007: 279–287.
[38] Pelucchi C, Negri E, ... La Vecchia C. Long-term particulate matter exposure and mortality: a review of European epidemiological studies. BMC Public Health. 2009 Dec 8;9:453. doi: 10.1186/1471-2458-9-453.
[39] Li T, Yan M, Sun Q, Anderson GB. Mortality risks from a spectrum of causes associated with wide-ranging exposure to fine particulate matter: A case-crossover study in Beijing, China. Environ Int. 2018 Feb;111:52-59. doi: 10.1016/j.envint.2017.10.023. Epub 2017 Nov 22.
[40] Puett RC, Hart JE, Suh H, Mittleman M, Laden F. Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. Environ Health Perspect. 2011 Aug;119(8):1130-5. doi: 10.1289/ehp.1002921. Epub 2011 Mar 31.
[41] Son JY, Bell ML. The relationships between short-term exposure to particulate matter and mortality in Korea: Impact of particulate matter exposure metrics for sub-daily exposures. Environ Res Lett. 2013 Mar;8(1):014015.
[42] Hart JE, Liao X, ... Laden F. The association of long-term exposure to PM2.5 on all-cause mortality in the Nurses' Health Study and the impact of measurement-error correction. Environ Health. 2015 May 1;14:38. doi: 10.1186/s12940-015-0027-6.
[43] Jiménez E, Linares C, Rodríguez LF, Bleda MJ, Díaz J. Short-term impact of particulate matter (PM2.5) on daily mortality among the over-75 age group in Madrid (Spain). Sci Total Environ. 2009 Oct 15;407(21):5486-92. doi: 10.1016/j.scitotenv.2009.06.038. Epub 2009 Jul 31.
[44] Badaloni C, Cesaroni G, ... Forastiere F. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study. Environ Int. 2017 Dec;109:146-154. doi: 10.1016/j.envint.2017.09.005. Epub 2017 Sep 30.
[45] Parker JD, Kravets N, Vaidyanathan A. Particulate Matter Air Pollution Exposure and Heart Disease Mortality Risks by Race and Ethnicity in the United States: 1997 to 2009 National Health Interview Survey With Mortality Follow-Up Through 2011. Circulation. 2018
[46] Kim OJ, Kim SY, Kim H. Association between Long-Term Exposure to Particulate Matter Air Pollution and Mortality in a South Korean National Cohort: Comparison across Different Exposure Assessment Approaches. Int J Environ Res Public Health. 2017 Sep 23;14(10). pii: E1103. doi: 10.3390/ijerph14101103.
[47] Hansell A, Ghosh RE, ... Gulliver J. Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study. Thorax. 2016 Apr;71(4):330-8. doi: 10.1136/thoraxjnl-2015-207111. Epub 2016 Feb 8.
[48] Torjesen I. Current exposure to pollution has greater health impact than former exposure, study shows. BMJ. 2016 Feb 8;352:i807. doi: 10.1136/bmj.i807.
[49] Power MC, Lamichhane AP, ... Whitsel EA. The Association of Long-Term Exposure to Particulate Matter Air Pollution with Brain MRI Findings: The ARIC Study. Environ Health Perspect. 2018 Feb 16;126(2):027009. doi: 10.1289/EHP2152.
[50] Yin P, Brauer M, ... Zhou M. Long-term Fine Particulate Matter Exposure and Nonaccidental and Cause-specific Mortality in a Large National Cohort of Chinese Men. Environ Health Perspect. 2017 Nov 7;125(11):117002. doi: 10.1289/EHP1673.
[51] Zhang Z, Chan TC, ... Lao XQ. Long-term exposure to ambient particulate matter (PM2.5) is associated with platelet counts in adults. Environ Pollut. 2018 Sep;240:432-439. doi: 10.1016/j.envpol.2018.04.123. Epub 2018 May 10.
[52] Qiu H, Schooling CM, ... Tian L. Long-term exposure to fine particulate matter air pollution and type 2 diabetes mellitus in elderly: A cohort study in Hong Kong. Environ Int. 2018 Apr;113:350-356. doi: 10.1016/j.envint.2018.01.008. Epub 2018 Feb 1.
[53] Lim YH, Bae HJ, ... Hong YC. Vascular and cardiac autonomic function and PM2.5 constituents among the elderly: A longitudinal study. Sci Total Environ. 2017 Dec 31;607-608:847-854. doi: 10.1016/j.scitotenv.2017.07.077. Epub 2017 Jul 27.
[54] Kim H, Kim J, ... Chae IH. Cardiovascular Effects of Long-Term Exposure to Air Pollution: A Population-Based Study With 900 845 Person-Years of Follow-up. J Am Heart Assoc. 2017 Nov 8;6(11). pii: e007170. doi: 10.1161/JAHA.117.007170.
[55] Adhikari R, D'Souza J, ... Adar SD. Long-term Coarse Particulate Matter Exposure and Heart Rate Variability in the Multi-ethnic Study of Atherosclerosis. Epidemiology. 2016 May;27(3):405-13. doi: 10.1097/EDE.0000000000000455.
[56] Zhang Z, Laden F, Forman JP, Hart JE. Long-Term Exposure to Particulate Matter and Self-Reported Hypertension: A Prospective Analysis in the Nurses' Health Study. Environ Health Perspect. 2016 Sep;124(9):1414-20. doi: 10.1289/EHP163. Epub 2016 May 13.
[57] Du Y, Xu X, ... Wang J. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis. 2016 Jan;8(1):E8-E19. doi: 10.3978/j.issn.2072-1439.2015.11.37.
[58] Martinelli N, Olivieri O, Girelli D. Air particulate matter and cardiovascular disease: a narrative review. Eur J Intern Med. 2013 Jun;24(4):295-302. doi: 10.1016/j.ejim.2013.04.001. Epub 2013 May 4.
[59] Cui Y, Sun Q, Liu Z. Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells. J Cell Mol Med. 2016 May;20(5):782-93. doi: 10.1111/jcmm.12822. Epub 2016 Mar 14.
[60] Fiordelisi A, Piscitelli P, ... Sorriento D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev. 2017 May;22(3):337-347. doi: 10.1007/s10741-017-9606-7.
[61] An Z, Jin Y, ... Wu W. Impact of Particulate Air Pollution on Cardiovascular Health. Curr Allergy Asthma Rep. 2018 Feb 22;18(3):15. doi: 10.1007/s11882-018-0768-8.
[62] Shanley RP, Hayes RB, ... Ahn J. Particulate Air Pollution and Clinical Cardiovascular Disease Risk Factors. Epidemiology. 2016 Mar;27(2):291-8. doi: 10.1097/EDE.0000000000000426.
[63] Ostro BD, Feng WY, Broadwin R, Malig BJ, Green RS, Lipsett MJ. The impact of components of fine particulate matter on cardiovascular mortality in susceptible subpopulations. Occup Environ Med. 2008 Nov;65(11):750-6. doi: 10.1136/oem.2007.036673. Epub 2008 Apr 16.
[64] Nasser Z, Salameh P, ... Leveque A. Outdoor particulate matter (PM) and associated cardiovascular diseases in the Middle East. Int J Occup Med Environ Health. 2015;28(4):641-61. doi: 10.13075/ijomeh.1896.00186.
[65] Fang SC, Cassidy A, Christiani DC. A systematic review of occupational exposure to particulate matter and cardiovascular disease. Int J Environ Res Public Health. 2010 Apr;7(4):1773-806. doi: 10.3390/ijerph7041773. Epub 2010 Apr 19.
[66] Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal. 2018 Mar 20;28(9):797-818. doi: 10.1089/ars.2017.7394. Epub 2017 Dec 12.
[67] Li H, Cai J, ... Kan H. Particulate Matter Exposure and Stress Hormone Levels: A Randomized, Double-Blind, Crossover Trial of Air Purification. Circulation. 2017 Aug 15;136(7):618-627. doi: 10.1161/CIRCULATIONAHA.116.026796.
[68] Hicken MT, Dvonch JT, Schulz AJ, Mentz G, Max P. Fine particulate matter air pollution and blood pressure: the modifying role of psychosocial stress. Environ Res. 2014 Aug;133:195-203. doi: 10.1016/j.envres.2014.06.001. Epub 2014 Jun 24.
[69] Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Baeza Squiban A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ Pollut. 2017 Nov;230:125-133. doi: 10.1016/j.envpol.2017.06.051. Epub 2017 Jun 22.
[70] Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Baeza Squiban A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ Pollut. 2017 Nov;230:125-133. doi: 10.1016/j.envpol.2017.06.051. Epub 2017 Jun 22.
[71] Piao MJ, Ahn MJ, ... Hyun JW. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol. 2018 Jun;92(6):2077-2091. doi: 10.1007/s00204-018-2197-9. Epub 2018 Mar 26.
[72] Pohl D, Benseler S. Systemic inflammatory and autoimmune disorders. Handb Clin Neurol. 2013;112:1243-52. doi: 10.1016/B978-0-444-52910-7.00047-7.
[73] Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol. 2012 Jan 12;2:98. doi: 10.3389/fimmu.2011.00098. eCollection 2011.
[74] Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010 Feb;129(2):154-69. doi: 10.1111/j.1365-2567.2009.03225.x.
[75] MohanKumar SM, Campbell A, Block M, Veronesi B. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology. 2008 May;29(3):479-88. doi: 10.1016/j.neuro.2007.12.004. Epub 2008 Jan 4.
[76] Lawal AO. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways. Toxicol Lett. 2017 Mar 15;270:88-95. doi: 10.1016/j.toxlet.2017.01.017. Epub 2017 Feb 9.
[77] Fagundes LS, Fleck Ada S, ... Rhoden CR. Direct contact with particulate matter increases oxidative stress in different brain structures. Inhal Toxicol. 2015;27(10):462-7. doi: 10.3109/08958378.2015.1060278. Epub 2015 Sep 1.
[78] Xia T, Kovochich M, Nel A. The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clin Occup Environ Med. 2006;5(4):817-36.
[79] Watterson TL, Hamilton B, Martin R, Coulombe RA Jr. Urban particulate matter causes ER stress and the unfolded protein response in human lung cells. Toxicol Sci. 2009 Nov;112(1):111-22. doi: 10.1093/toxsci/kfp186. Epub 2009 Aug 12.
[80] Hong Z, Guo Z, ... Deng C. Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells. Tohoku J Exp Med. 2016 Jun;239(2):117-25. doi: 10.1620/tjem.239.117.
[81] Ailshire J, Karraker A, Clarke P. Neighborhood social stressors, fine particulate matter air pollution, and cognitive function among older U.S. adults. Soc Sci Med. 2017 Jan;172:56-63. doi: 10.1016/j.socscimed.2016.11.019. Epub 2016 Nov 14.
[82] Laing S, Wang G, ... Zhang K. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. 2010 Oct;299(4):C736-49. doi: 10.1152/ajpcell.00529.2009. Epub 2010 Jun 16.
[83] Brunst KJ, Sanchez-Guerra M, ... Wright RJ. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: Effect modification by maternal lifetime trauma and child sex. Environ Int. 2018 Mar;112:49-58. doi: 10.1016/j.envint.2017.12.020. Epub 2017 Dec 15.
[84] Golomb E, Matza D,... Shapira OM. Myocardial mitochondrial injury induced by pulmonary exposure to particulate matter in rats. Toxicol Pathol. 2012 Jul;40(5):779-88. doi: 10.1177/0192623312441409. Epub 2012 May 1.
[85] Malinska D, Szymański J,... Wieckowski MR. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food Chem Toxicol. 2018 May;115:1-12. doi: 10.1016/j.fct.2018.02.013. Epub 2018 Feb 13.
[86] Nichols CE, Shepherd DL, ... Hollander JM. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015 Dec 15;309(12):H2017-30. doi: 10.1152/ajpheart.00353.2015. Epub 2015 Oct 23.
[87] Soberanes S, Gonzalez A, Urich D, ... Budinger GR. Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway. Sci Rep. 2012;2:275. doi: 10.1038/srep00275. Epub 2012 Feb 17.
[88] Hou L, Zhu ZZ, Zhang X, ... Baccarelli A. Airborne particulate matter and mitochondrial damage: a cross-sectional study. Environ Health. 2010 Aug 9;9:48. doi: 10.1186/1476-069X-9-48.
[89] Bhargava A, Tamrakar S, ... Mishra PK. Ultrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytes. Environ Pollut. 2018 Mar;234:406-419. doi: 10.1016/j.envpol.2017.11.093. Epub 2017 Dec 1.
[90] Xia T, Kovochich M, Nel AE. Impairment of mitochondrial function by particulate matter (PM) and their toxic components: implications for PM-induced cardiovascular and lung disease. Front Biosci. 2007 Jan 1;12:1238-46.
[91] Janssen BG, Byun HM, ... Nawrot TS. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: An ENVIRONAGE birth cohort study. Epigenetics. 2015;10(6):536-44. doi: 10.1080/15592294.2015.1048412.
[92] Yang X, Feng L ... Sun Z. Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in human cardiomyocytes. Ecotoxicol Environ Saf. 2018 Jun 6;161:198-207. doi: 10.1016/j.ecoenv.2018.05.092.
[93] Nelin TD, Joseph AM, Gorr MW, Wold LE. Direct and indirect effects of particulate matter on the cardiovascular system. Toxicol Lett. 2012 Feb 5;208(3):293-9. doi: 10.1016/j.toxlet.2011.11.008. Epub 2011 Nov 18.
[94] Folino AF, Scapellato ML,... Lotti M. Individual exposure to particulate matter and the short-term arrhythmic and autonomic profiles in patients with myocardial infarction. Eur Heart J. 2009 Jul;30(13):1614-20. doi: 10.1093/eurheartj/ehp136. Epub 2009 May 2.
[95] Wu S, Deng F, Niu J, Huang Q, Liu Y, Guo X. The relationship between traffic-related air pollutants and cardiac autonomic function in a panel of healthy adults: a further analysis with existing data. Inhal Toxicol. 2011 Apr;23(5):289-303. doi: 10.3109/08958378.2011.568976.
[96] Loane C, Pilinis C, Lekkas TD, Politis M. Ambient particulate matter and its potential neurological consequences. Rev Neurosci. 2013;24(3):323-35. doi: 10.1515/revneuro-2013-0001.
[97] Wang Y, Xiong L, Tang M. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol. 2017 Jun;37(6):644-667. doi: 10.1002/jat.3451. Epub 2017 Mar 16.
[98] Bhatt DP, Puig KL, ... Combs CK. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS One. 2015 May 20;10(5):e0127102. doi: 10.1371/journal.pone.0127102. eCollection 2015.
[99] Wang BR, Shi JQ, ... Zhang YD. PM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer's disease. J Neuroinflammation. 2018 May 2;15(1):132. doi: 10.1186/s12974-018-1178-5.
[100] Palacios N, Fitzgerald KC, ... Laden F. Particulate matter and risk of Parkinson disease in a large prospective study of women. Environ Health. 2014 Oct 7;13:80. doi: 10.1186/1476-069X-13-80.
[101] Palacios N. Air pollution and Parkinson's disease - evidence and future directions. Rev Environ Health. 2017 Dec 20;32(4):303-313. doi: 10.1515/reveh-2017-0009.
[102] Kim SY, Kim JK, ... Park MK. Effects of inhaled particulate matter on the central nervous system in mice.Neurotoxicology. 2018 Jul;67:169-177. doi: 10.1016/j.neuro.2018.06.001. Epub 2018 Jun 4.
[103] Kulas JA, Hettwer JV, ... Combs CK. In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice. Environ Pollut. 2018 Oct;241:279-288. doi: 10.1016/j.envpol.2018.05.047. Epub 2018 May 22.
[104] Verones B, Oortgiesen M. Neurogenic inflammation and particulate matter (PM) air pollutants. Neurotoxicology. 2001 Dec;22(6):795-810.
[105] Wyzga RE, Rohr AC. Long-term particulate matter exposure: Attributing health effects to individual PM components. J Air & Waste Management Association 65(5) 2015 523-543.
[106] Wilker EH, Preis SR, ... Mittleman MA. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke. 2015 May;46(5):1161-6. doi: 10.1161/STROKEAHA.114.008348.
[107] Schmidt S. Particulate Matter and Cognition: Using Brain Imaging to Study Impacts of Air Pollution. Environ Health Perspect. 2018 Jun 8;126(6):064003. doi: 10.1289/EHP3445. eCollection 2018 Jun.
[108] Wilker EH, Martinez-Ramirez S, Kloog ... Viswanathan A. Fine Particulate Matter, Residential Proximity to Major Roads, and Markers of Small Vessel Disease in a Memory Study Population. J Alzheimers Dis. 2016 Jun 30;53(4):1315-23. doi: 10.3233/JAD-151143.
[109] Weuve J, Puett RC, ... Grodstein F. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012 Feb 13;172(3):219-27. doi: 10.1001/archinternmed.2011.683.
[110] Brockmeyer S, D'Angiulli A. How air pollution alters brain development: the role of neuroinflammation. Transl Neurosci. 2016 Mar 21;7(1):24-30. doi: 10.1515/tnsci-2016-0005. eCollection 2016.
[111] Scheers H, Jacobs L, Casas L, Nemery B, Nawrot TS. Long-Term Exposure to Particulate Matter Air Pollution Is a Risk Factor for Stroke: Meta-Analytical Evidence. Stroke. 2015 Nov;46(11):3058-66. doi: 10.1161/STROKEAHA.115.009913. Epub 2015 Oct 13.
[112] Guxens M, Lubczyńska MJ, ... El Marroun H. Air Pollution Exposure During Fetal Life, Brain Morphology, and Cognitive Function in School-Age Children. Biol Psychiatry. 2018 Aug 15;84(4):295-303. doi: 10.1016/j.biopsych.2018.01.016. Epub 2018 Jan 31.
[113] Ailshire JA, Clarke P. Fine particulate matter air pollution and cognitive function among U.S. older adults. J Gerontol B Psychol Sci Soc Sci. 2015 Mar;70(2):322-8. doi: 10.1093/geronb/gbu064. Epub 2014 Jun 6.
[114] Campbell A, Oldham M, ... Kleinman M. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology. 2005 Jan;26(1):133-40.
[115] Cacciottolo M, Wang X, ... Chen JC. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry. 2017 Jan 31;7(1):e1022. doi: 10.1038/tp.2016.280.
[116] Guo L, Zhu N, Guo Z, Li GK, Chen C, Sang N, Yao QC. Particulate matter (PM10) exposure induces endothelial dysfunction and inflammation in rat brain. J Hazard Mater. 2012 Apr 30;213-214:28-37. doi: 10.1016/j.jhazmat.2012.01.034. Epub 2012 Jan 20.
[117] Campbell A, Araujo JA, Li H, Sioutas C, Kleinman M. Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. J Nanosci Nanotechnol. 2009 Aug;9(8):5099-104.
[118] Newell K, Kartsonaki C, Lam KBH, Kurmi OP. Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Planet Health. 2017 Dec;1(9):e368-e380. doi: 10.1016/S2542-5196(17)30166-3. Epub 2017 Dec 8.
[119] Requia WJ, Adams MD, ... Mahmoud M. Global Association of Air Pollution and Cardiorespiratory Diseases: A Systematic Review, Meta-Analysis, and Investigation of Modifier Variables. Am J Public Health. 2018 Apr;108(S2):S123-S130. doi: 10.2105/AJPH.2017.303839. Epub 2017 Oct 26.
[120] Fajersztajn L, Saldiva P, ... Buehler AM. Short-term effects of fine particulate matter pollution on daily health events in Latin America: a systematic review and meta-analysis. Int J Public Health. 2017 Sep;62(7):729-738. doi: 10.1007/s00038-017-0960-y. Epub 2017 Mar 2.
[121] Li J, Sun S, ... Tian L. Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2016 Dec 12;11:3079-3091. doi: 10.2147/COPD.S122282. eCollection 2016.
[122] Liu Q, Xu C, ... Zhao P. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies. J Biomed Res. 2017 Jan 19;31(2):130-142. doi: 10.7555/JBR.31.20160071.
[123] Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016 Jan;8(1):E69-74. doi: 10.3978/j.issn.2072-1439.2016.01.19.
[124] Lim H, Kwon HJ, ... Choi WJ. Short-term Effect of Fine Particulate Matter on Children's Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis. J Prev Med Public Health. 2016 Jul;49(4):205-19. doi: 10.3961/jpmph.16.037.
[125] Paulin L, Hansel N. Particulate air pollution and impaired lung function. F1000Res. 2016 Feb 22;5. pii: F1000 Faculty Rev-201. doi: 10.12688/f1000research.7108.1. eCollection 2016.
[126] Hamra GB, Guha N, Cohen A, ... Loomis D. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014 Sep;122(9):906-11. doi: 10.1289/ehp.1408092. Epub 2014 Jun 6.
[127] Hamra GB, Guha N, ... Loomis D. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014 Sep;122(9):906-11. doi: 10.1289/ehp.1408092. Epub 2014 Jun 6.
[128] Bloemsma LD, Hoek G, Smit LAM. Panel studies of air pollution in patients with COPD: Systematic review and meta-analysis. Environ Res. 2016 Nov;151:458-468. doi: 10.1016/j.envres.2016.08.018. Epub 2016 Aug 24.
[129] Roy A, Hu W, Wei F, Korn L, Chapman RS, Zhang JJ. Ambient particulate matter and lung function growth in Chinese children. Epidemiology. 2012 May;23(3):464-72. doi: 10.1097/EDE.0b013e31824cbd6d.
[130] de Hartog JJ, Ayres JG, ... Hoek G. Lung function and indicators of exposure to indoor and outdoor particulate matter among asthma and COPD patients. Occup Environ Med. 2010 Jan;67(1):2-10. doi: 10.1136/oem.2008.040857. Epub 2009 Sep 6.
[131] Koenig JQ, Larson TV, ... Pierson WE. Pulmonary function changes in children associated with fine particulate matter. Environ Res. 1993 Oct;63(1):26-38.
[132] Guo C1, Zhang Z1, ... Lao XQ. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: a longitudinal, cohort study. Lancet Planet Health. 2018 Mar;2(3):e114-e125. doi: 10.1016/S2542-5196(18)30028-7. Epub 2018 Mar 2.
[133] Horak F Jr, Studnicka M, ... Frischer T. Particulate matter and lung function growth in children: a 3-yr follow-up study in Austrian schoolchildren. Eur Respir J. 2002 May;19(5):838-45.
[134] Wang C, Cai J,... Kan H. Personal exposure to fine particulate matter, lung function and serum club cell secretory protein (Clara). Environ Pollut. 2017 Jun;225:450-455. doi: 10.1016/j.envpol.2017.02.068. Epub 2017 Mar 9.
[135] Ibhafidon LI, Obaseki DO, ... Obioh I. Respiratory symptoms, lung function and particulate matter pollution in residential indoor environment in Ile-Ife, Nigeria. Niger Med J. 2014 Jan;55(1):48-53. doi: 10.4103/0300-1652.128164.
[136] Kim JH, Lim DH, Kim JK, Jeong SJ, Son BK. Effects of particulate matter (PM10) on the pulmonary function of middle-school children. J Korean Med Sci. 2005 Feb;20(1):42-5.
[137] Wu S, Deng F, ... Guo X. Fine particulate matter, temperature, and lung function in healthy adults: findings from the HVNR study. Chemosphere. 2014 Aug;108:168-74. doi: 10.1016/j.chemosphere.2014.01.032. Epub 2014 Feb 16.
[138] Tashakkor AY, Chow KS, Carlsten C. Modification by antioxidant supplementation of changes in human lung function associated with air pollutant exposure: a systematic review. BMC Public Health. 2011 Jul 5;11:532. doi: 10.1186/1471-2458-11-532.
[139] Bloemsma LD, Hoek G, Smit LAM. Panel studies of air pollution in patients with COPD: Systematic review and meta-analysis. Environ Res. 2016 Nov;151:458-468. doi: 10.1016/j.envres.2016.08.018. Epub 2016 Aug 24.
[140] Chen H, Goldberg MS, Villeneuve PJ. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health. 2008 Oct-Dec;23(4):243-97.
[141] Ali MU, Liu G, ... Munir MAM. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ Geochem Health. 2018 Oct 8. doi: 10.1007/s10653-018-0203-z.
[142] Cui P, Huang Y, Han J, Song F, Chen K. Ambient particulate matter and lung cancer incidence and mortality: a meta-analysis of prospective studies. Eur J Public Health. 2015 Apr;25(2):324-9. doi: 10.1093/eurpub/cku145. Epub 2014 Sep 8.
[143] Carter E, Norris C, ... Baumgartner J. Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter. Environ Health Perspect. 2017 Jul 28;125(7):076002. doi: 10.1289/EHP767.
[144] Ngoc LTN, Park D, Lee Y, Lee YC. Systematic Review and Meta-Analysis of Human Skin Diseases Due to Particulate Matter. Int J Environ Res Public Health. 2017 Nov 25;14(12). pii: E1458. doi: 10.3390/ijerph14121458.
[145] Coker E, Kizito S. A Narrative Review on the Human Health Effects of Ambient Air Pollution in Sub-Saharan Africa: An Urgent Need for Health Effects Studies. Int J Environ Res Public Health. 2018 Mar 1;15(3). pii: E427. doi: 10.3390/ijerph15030427.
[146] Barone-Adesi F, Dent JE, ... Whincup PH. Long-Term Exposure to Primary Traffic Pollutants and Lung Function in Children: Cross-Sectional Study and Meta-Analysis. PLoS One. 2015 Nov 30;10(11):e0142565. doi: 10.1371/journal.pone.0142565. eCollection 2015.
[147] Fan J, Li S, ... Yang K. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2016 Jan;23(1):843-50. doi: 10.1007/s11356-015-5321-x. Epub 2015 Sep 8.
[148] Khalili R, Bartell SM, ... Vieira VM. Early-life exposure to PM2.5 and risk of acute asthma clinical encounters among children in Massachusetts: a case-crossover analysis. Environ Health. 2018 Feb 21;17(1):20. doi: 10.1186/s12940-018-0361-6.
[149] Khreis H, Kelly C, ... Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ Int. 2017 Mar;100:1-31. doi: 10.1016/j.envint.2016.11.012. Epub 2016 Nov 21.
[150] Hehua Z, Qing C, ... Yuhong Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ Res. 2017 Nov;159:519-530. doi: 10.1016/j.envres.2017.08.038. Epub 2017 Sep 8.
[151] Vernon MK, Wiklund I, Bell JA, Dale P, Chapman KR. What do we know about asthma triggers? a review of the literature. J Asthma. 2012 Dec;49(10):991-8. doi: 10.3109/02770903.2012.738268.
[152] Cao Q, Rui G, Liang Y. Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model. BMC Public Health. 2018 Jul 27;18(1):925. doi: 10.1186/s12889-018-5844-4.
[153] Hoek G, Krishnan RM, ... Kaufman JD. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ Health. 2013 May 28;12(1):43. doi: 10.1186/1476-069X-12-43.
[154] Whyand T, Hurst JR, Beckles M, Caplin ME. Pollution and respiratory disease: can diet or supplements help? A review. Respir Res. 2018 May 2;19(1):79. doi: 10.1186/s12931-018-0785-0.
[155] Consonni D, Carugno M, ... Landi MT. Outdoor particulate matter (PM10) exposure and lung cancer risk in the EAGLE study. PLoS One. 2018 Sep 14;13(9):e0203539. doi: 10.1371/journal.pone.0203539. eCollection 2018.
[156] Lamichhane DK, Kim HC, ... Park SM. Lung Cancer Risk and Residential Exposure to Air Pollution: A Korean Population-Based Case-Control Study. Yonsei Med J. 2017 Nov;58(6):1111-1118. doi: 10.3349/ymj.2017.58.6.1111.
[157] Shin J, Park JY, Choi J. Long-term exposure to ambient air pollutants and mental health status: A nationwide population-based cross-sectional study. PLoS One. 2018 Apr 9;13(4):e0195607. doi: 10.1371/journal.pone.0195607. eCollection 2018.
[158] Sheffield PE, Speranza R, ... Wright RJ. Association between particulate air pollution exposure during pregnancy and postpartum maternal psychological functioning. PLoS One. 2018 Apr 18;13(4):e0195267. doi: 10.1371/journal.pone.0195267. eCollection 2018.
[159] Gao Q, Xu Q, ... Zhu H. Particulate matter air pollution associated with hospital admissions for mental disorders: A time-series study in Beijing, China. Eur Psychiatry. 2017 Jul;44:68-75. doi: 10.1016/j.eurpsy.2017.02.492. Epub 2017 Apr 7.
[160] Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. Chemosphere. 2017 Dec;188:32-48. doi: 10.1016/j.chemosphere.2017.08.076. Epub 2017 Aug 22.
[161] Baccarelli A, Martinelli I, ... Schwartz J. Exposure to particulate air pollution and risk of deep vein thrombosis. Arch Intern Med. 2008 May 12;168(9):920-7. doi: 10.1001/archinte.168.9.920.
[162] Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008 Oct-Dec;26(4):339-62. doi: 10.1080/10590500802494538.
[163] Mehta M, Chen LC, Gordon T, Rom W, Tang MS. Particulate matter inhibits DNA repair and enhances mutagenesis. Mutat Res. 2008 Dec 8;657(2):116-21. doi: 10.1016/j.mrgentox.2008.08.015. Epub 2008 Aug 29.
[164] Somers CM, McCarry BE, Malek F, Quinn JS. Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science. 2004 May 14;304(5673):1008-10.
[165] Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005 Dec 30;592(1-2):119-37. Epub 2005 Aug 8.
[166] Dominici F, Greenstone M, Sunstein CR. Science and regulation. Particulate matter matters. Science. 2014 Apr 18;344(6181):257-9. doi: 10.1126/science.1247348.
[167] Tomczak A, Miller AB, ... Villeneuve PJ. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. Int J Cancer. 2016 Nov 1;139(9):1958-66. doi: 10.1002/ijc.30255. Epub 2016 Aug 4.
[168] Liu C , Xu X, ... Rajagopalan S. Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice. Environ Health Perspect. 2014 Jan;122(1):17-26. doi: 10.1289/ehp.1306841. Epub 2013 Oct 22.
[169] Brauer M, Avila-Casado C, ... Churg A. Air pollution and retained particles in the lung. Environ Health Perspect. 2001 Oct;109(10):1039-43.
[170] Schulz H. Fine particulate matter - a health hazard for lungs and other organs?. Pneumologie. 2006 Oct;60(10):611-5.
[171] Choi H, Wang L, Lin X, Spengler JD, Perera FP. Fetal window of vulnerability to airborne polycyclic aromatic hydrocarbons on proportional intrauterine growth restriction. PLoS One. 2012;7(4):e35464. doi: 10.1371/journal.pone.0035464. Epub 2012 Apr 24.
[172] Dejmek J, Selevan SG, Benes I, Solanský I, Srám RJ. Fetal growth and maternal exposure to particulate matter during pregnancy. Environ Health Perspect. 1999 Jun;107(6):475-80.
[173] Han Y, Ji Y, ... Xia Y. Effects of particulate matter exposure during pregnancy on birth weight: A retrospective cohort study in Suzhou, China. Sci Total Environ. 2018 Feb 15;615:369-374. doi: 10.1016/j.scitotenv.2017.09.236. Epub 2017 Oct 4.
[174] Giovannini N, Schwartz L, ... Cetin I. Particulate matter (PM10) exposure, birth and fetal-placental weight and umbilical arterial pH: results from a prospective study. J Matern Fetal Neonatal Med. 2018 Mar;31(5):651-655. doi: 10.1080/14767058.2017.1293032. Epub 2017 Apr 10.
[175] Pearce MS, Glinianaia SV, ... Pless-Mulloli T. Particulate matter exposure during pregnancy is associated with birth weight, but not gestational age, 1962-1992: a cohort study. Environ Health. 2012 Mar 9;11:13. doi: 10.1186/1476-069X-11-13.
[176] Ren Z, Zhu J, ... Wang J. Maternal exposure to ambient PM10 during pregnancy increases the risk of congenital heart defects: Evidence from machine learning models. Sci Total Environ. 2018 Jul 15;630:1-10. doi: 10.1016/j.scitotenv.2018.02.181. Epub 2018 Feb 19.
[177] Song J, Chen Y, ... Kong YY. Early-life exposure to air pollutants and adverse pregnancy outcomes: protocol for a prospective cohort study in Beijing. BMJ Open. 2017 Sep 3;7(9):e015895. doi: 10.1136/bmjopen-2017-015895.
[178] Symanski E, Davila M, ... Lai D. Maternal exposure to fine particulate pollution during narrow gestational periods and newborn health in Harris County, Texas. Matern Child Health J. 2014 Oct;18(8):2003-12. doi: 10.1007/s10995-014-1446-7.
[179] Jedrychowski WA, Perera FP,... Spengler JD. Effect of prenatal exposure to fine particulate matter on ventilatory lung function of preschool children of non-smoking mothers. Paediatr Perinat Epidemiol. 2010 Sep;24(5):492-501. doi: 10.1111/j.1365-3016.2010.01136.x.
[180] Sack C, Goss CH. It Starts at the Beginning: Effect of Particulate Matter In Utero. Am J Respir Crit Care Med. 2015 Nov 1;192(9):1025-6. doi: 10.1164/rccm.201507-1468ED.
[181] Trasande L, Malecha P, Attina TM. Particulate Matter Exposure and Preterm Birth: Estimates of U.S. Attributable Burden and Economic Costs. Environ Health Perspect. 2016 Dec;124(12):1913-1918. Epub 2016 Mar 29.
[182] Malley CS, Kuylenstierna JC, ... Ashmore MR. Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment. Environ Int. 2017 Apr;101:173-182. doi: 10.1016/j.envint.2017.01.023. Epub 2017 Feb 10.
[183] DeFranco E, Moravec W, ... Chen A. Exposure to airborne particulate matter during pregnancy is associated with preterm birth: a population-based cohort study. Environ Health. 2016 Jan 15;15:6. doi: 10.1186/s12940-016-0094-3.
[184] Sun X, Luo X, ... Liu T. The association between fine particulate matter exposure during pregnancy and preterm birth: a meta-analysis. BMC Pregnancy Childbirth. 2015 Nov 18;15:300. doi: 10.1186/s12884-015-0738-2.
[185] Magnani ND, Muresan XM, ... Valacchi G. Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure. Toxicol Sci. 2016 Jan;149(1):227-36. doi: 10.1093/toxsci/kfv230. Epub 2015 Oct 26.
[186] Wang T, Chiang ET, ... Garcia JG. Particulate matter disrupts human lung endothelial barrier integrity via ROS- and p38 MAPK-dependent pathways. Am J Respir Cell Mol Biol. 2010 Apr;42(4):442-9. doi: 10.1165/rcmb.2008-0402OC. Epub 2009 Jun 11.
[187] Bräuner EV, Mortensen J, ... Loft S. Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function. Inhal Toxicol. 2009 Jan;21(1):38-47. doi: 10.1080/08958370802304735 .
[188] Wang T, Wang L, ... Garcia JG. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation. Part Fibre Toxicol. 2012 Aug 29;9:35. doi: 10.1186/1743-8977-9-35.
[189] Kaplan GG, Szyszkowicz M, ... Storr M. Non-specific abdominal pain and air pollution: a novel association. PLoS One. 2012;7(10):e47669. doi: 10.1371/journal.pone.0047669. Epub 2012 Oct 31.
[190] Kish L, Hotte N, ... Madsen KL. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One. 2013 Apr 24;8(4):e62220. doi: 10.1371/journal.pone.0062220. Print 2013.
[191] Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes. 2014 Mar-Apr;5(2):215-9. doi: 10.4161/gmic.27251. Epub 2013 Dec 20.
[192] Marynowski M, Likońska A, Zatorski H, Fichna J. Role of environmental pollution in irritable bowel syndrome. World J Gastroenterol. 2015 Oct 28;21(40):11371-8. doi: 10.3748/wjg.v21.i40.11371.
[193] Yoshizaki K, Brito JM, ... Macchione M. The effects of particulate matter on inflammation of respiratory system: Differences between male and female. Sci Total Environ. 2017 May 15;586:284-295. doi: 10.1016/j.scitotenv.2017.01.221. Epub 2017 Feb 4.
[194] Tamagawa E, Bai N, ... van Eeden SF. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol. 2008 Jul;295(1):L79-85. doi: 10.1152/ajplung.00048.2007. Epub 2008 May 9.
[195] Wang J, Huang J, ... Song Y. Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. Thorac Dis. 2017 Nov;9(11):4398-4412. doi: 10.21037/jtd.2017.09.135.
[196] Tamagawa E1, Bai N, ... van Eeden SF. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol. 2008 Jul;295(1):L79-85. doi: 10.1152/ajplung.00048.2007. Epub 2008 May 9.
[197] Farina F, Sancini G, ... Palestini P. Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice. PLoS One. 2013;8(2):e56636. doi: 10.1371/journal.pone.0056636. Epub 2013 Feb 25.
[198] Morishita M, Keeler G, ... Harkema J. Pulmonary retention of particulate matter is associated with airway inflammation in allergic rats exposed to air pollution in urban Detroit. Inhal Toxicol. 2004 Sep;16(10):663-74.
[199] Hwang SH, Park JB, Lee KJ. Exposure assessment of particulate matter and blood chromium levels in people living near a cement plant. Environ Geochem Health. 2018 Aug;40(4):1237-1246. doi: 10.1007/s10653-017-0039-y. Epub 2017 Nov 21.
[200] Byrd JB, Morishita M, ... Brook RD. Acute increase in blood pressure during inhalation of coarse particulate matter air pollution from an urban location. J Am Soc Hypertens. 2016 Feb;10(2):133-139.e4. doi: 10.1016/j.jash.2015.11.015. Epub 2015 Nov 26.
[201] Seaton A, Soutar A, ... Stout R. Particulate air pollution and the blood. Thorax. 1999 Nov;54(11):1027-32.
[202] Sørensen M, Daneshvar B, ... Loft S. Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect. 2003 Feb;111(2):161-6.
[203] Steenhof M, Janssen NA, ... Brunekreef B. Air pollution exposure affects circulating white blood cell counts in healthy subjects: the role of particle composition, oxidative potential and gaseous pollutants - the RAPTES project. Inhal Toxicol. 2014 Feb;26(3):141-65. doi: 10.3109/08958378.2013.861884.
[204] Raaschou-Nielsen O, Andersen ZJ, ... Hoek G. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013 Aug;14(9):813-22. doi: 10.1016/S1470-2045(13)70279-1. Epub 2013 Jul 10.
[205] Panis LI, Geus B, ... Meeusen R. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmospheric Environment 44(19} 2010: 2263-2270.
[206] Our World In Data. Global Burden Of Disease 2016.
[207] States Of Global Affair. State Of Global Air 2018: A Special Report On Global Exposure To Air Pollution And Its Disease Burden.
[208] United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352)
[209] Meng QY, Spector D, Colome S, Turpin B. Determinants of Indoor and Personal Exposure to PM(2.5) of Indoor and Outdoor Origin during the RIOPA Study. Atmos Environ (1994). 2009 Nov;43(36):5750-5758.
[210] Lin LY, Chuang HC, Liu IJ, Chen HW, Chuang KJ. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population. Sci Total Environ. 2013 Oct 1;463-464:176-81. doi: 10.1016/j.scitotenv.2013.05.093. Epub 2013 Jun 23.
[211] Huang YL, Chen HW, ... Chuang KJ. Personal exposure to household particulate matter, household activities and heart rate variability among housewives. PLoS One. 2014 Mar 3;9(3):e89969. doi: 10.1371/journal.pone.0089969. eCollection 2014.
[212] Macintosh DL, Myatt TA, ... Spengler JD. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems. J Air Waste Manag Assoc. 2008 Nov;58(11):1474-82.
[213] Macintosh DL, Myatt TA, ... Spengler JD. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems. J Air Waste Manag Assoc. 2008 Nov;58(11):1474-82.
[214] Park HK, Cheng KC, ... Nadeau KC. Effectiveness of air purifier on health outcomes and indoor particles in homes of children with allergic diseases in Fresno, California: A pilot study. J Asthma. 2017 May;54(4):341-346. doi: 10.1080/02770903.2016.1218011. Epub 2016 Oct 10.
[215] Sublett JL. Effectiveness of air filters and air cleaners in allergic respiratory diseases: a review of the recent literature. Curr Allergy Asthma Rep. 2011 Oct;11(5):395-402. doi: 10.1007/s11882-011-0208-5.
[216] Lim SS, Vos T, ... Memish ZA. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec 15;380(9859):2224-60. doi: 10.1016/S0140-6736(12)61766-8.
[217] Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol. 2012 Jun;8(2):166-75. doi: 10.1007/s13181-011-0203-1.
[218] Bonner JC. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc. 2010 May;7(2):138-41. doi: 10.1513/pats.200907-061RM.
[219] Sharman JE, Cockcroft JR, Coombes JS. Cardiovascular implications of exposure to traffic air pollution during exercise. QJM. 2004 Oct;97(10):637-43.
[220] Diette GB , McCormack MC, Hansel NN, Breysse PN, Matsui EC. Environmental issues in managing asthma. Respir Care. 2008 May;53(5):602-15; discussion 616-7.
[221] Suades-González E, Gascon M, Guxens M, Sunyer J. Air Pollution and Neuropsychological Development: A Review of the Latest Evidence. Endocrinology. 2015 Oct;156(10):3473-82. doi: 10.1210/en.2015-1403. Epub 2015 Aug 4.
[222] Talbott EO, Arena VC, ... Stacy SL. Fine particulate matter and the risk of autism spectrum disorder. Environ Res. 2015 Jul;140:414-20. doi: 10.1016/j.envres.2015.04.021. Epub 2015 May 15.
[223] Weisskopf MG, Kioumourtzoglou MA, Roberts AL. Air Pollution and Autism Spectrum Disorders: Causal or Confounded? Curr Environ Health Rep. 2015 Dec;2(4):430-9. doi: 10.1007/s40572-015-0073-9.
[224] Morales-Suárez-Varela M, Peraita-Costa I, Llopis-González A. Systematic review of the association between particulate matter exposure and autism spectrum disorders. Environ Res. 2017 Feb;153:150-160. doi: 10.1016/j.envres.2016.11.022. Epub 2016 Dec 13.
[225] Fordyce TA, Leonhard MJ, Chang ET. A critical review of developmental exposure to particulate matter, autism spectrum disorder, and attention deficit hyperactivity disorder. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018 Jan 28;53(2):174-204. doi: 10.1080/10934529.2017.1383121. Epub 2017 Nov 20.
[226] Lam J, Sutton P, ... Woodruff T. A Systematic Review and Meta-Analysis of Multiple Airborne Pollutants and Autism Spectrum Disorder. PLoS One. 2016 Sep 21;11(9):e0161851. doi: 10.1371/journal.pone.0161851. eCollection 2016.
[227] Health Quality Ontario. Air cleaning technologies: an evidence-based analysis. Ont Health Technol Assess Ser. 2005;5(17):1-52. Epub 2005 Nov 1.
[228] Wyon DP. The effects of indoor air quality on performance and productivity. Indoor Air. 2004;14 Suppl 7:92-101.
[229] Barn P, Gombojav E, ... Allen RW. The effect of portable HEPA filter air cleaner use during pregnancy on fetal growth: The UGAAR randomized controlled trial. Environ Int. 2018 Sep 10. pii: S0160-4120(18)31141-3. doi: 10.1016/j.envint.2018.08.036.
[230] Barn P, Gombojav E,... Allen RW. The effect of portable HEPA filter air cleaners on indoor PM2.5 concentrations and second hand tobacco smoke exposure among pregnant women in Ulaanbaatar, Mongolia: The UGAAR randomized controlled trial. Sci Total Environ. 2018 Feb 15;615:1379-1389. doi: 10.1016/j.scitotenv.2017.09.291. Epub 2017 Oct 17.
[231] Morgan WJ, Crain EF, ... Inner-City Asthma Study Group. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004 Sep 9;351(11):1068-80.
[232] Wood RA. Air filtration devices in the control of indoor allergens. Curr Allergy Asthma Rep. 2002 Sep;2(5):397-400.
[233] McDonald E, Cook D, Newman T, Griffith L, Cox G, Guyatt G. Effect of air filtration systems on asthma: a systematic review of randomized trials. Chest. 2002 Nov;122(5):1535-42.
[234] Lanphear BP, Hornung RW, ... Kalkbrenner A. Effects of HEPA air cleaners on unscheduled asthma visits and asthma symptoms for children exposed to secondhand tobacco smoke. Pediatrics. 2011 Jan;127(1):93-101. doi: 10.1542/peds.2009-2312. Epub 2010 Dec 13.
[235] Francis H, Fletcher G, ... Niven R. Clinical effects of air filters in homes of asthmatic adults sensitized and exposed to pet allergens. Clin Exp Allergy. 2003 Jan;33(1):101-5.
[236] Myatt TA, Minegishi T, Allen JG, Macintosh DL. Control of asthma triggers in indoor air with air cleaners: a modeling analysis. Environ Health. 2008 Aug 6;7:43. doi: 10.1186/1476-069X-7-43.
[237] van der Heide S, van Aalderen WM, ... de Monchy JG. Clinical effects of air cleaners in homes of asthmatic children sensitized to pet allergens. J Allergy Clin Immunol. 1999 Aug;104(2 Pt 1):447-51.
[238] Wood RA, Johnson EF, Van Natta ML, Chen PH, Eggleston PA. A placebo-controlled trial of a HEPA air cleaner in the treatment of cat allergy. Am J Respir Crit Care Med. 1998 Jul;158(1):115-20.
[239] Zhan Y, Johnson K, ... Schauer JJ. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. Sci Total Environ. 2018 Jun 1;626:507-518. doi: 10.1016/j.scitotenv.2018.01.024. Epub 2018 Feb 19.
[240] Jia-Ying L, Zhao C, ... Bao-Qing S. Efficacy of air purifier therapy in allergic rhinitis. Asian Pac J Allergy Immunol. 2018 Mar 12. doi: 10.12932/AP-010717-0109.
[241] Morishita M, Adar SD, ... Brook RD. Effect of Portable Air Filtration Systems on Personal Exposure to Fine Particulate Matter and Blood Pressure Among Residents in a Low-Income Senior Facility: A Randomized Clinical Trial. JAMA Intern Med. 2018 Oct 1;178(10):1350-1357. doi: 10.1001/jamainternmed.2018.3308.
[242] Yu N, Shu S, ... Zhu Y. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation. PLoS One. 2017 Nov 27;12(11):e0188498. doi: 10.1371/journal.pone.0188498. eCollection 2017.
[243] Rice JL, Brigham E, ... Diette GB. The feasibility of an air purifier and secondhand smoke education intervention in homes of inner city pregnant women and infants living with a smoker. Environ Res. 2018 Jan;160:524-530. doi: 10.1016/j.envres.2017.10.020. Epub 2017 Oct 29.
[244] Johnson L, Ciaccio C, ... Portnoy JM. Low-cost interventions improve indoor air quality and children's health. Allergy Asthma Proc. 2009 Jul-Aug;30(4):377-85. doi: 10.2500/aap.2009.30.3257.
[245] Batterman S, Du L, Mentz G, ... Lewis T. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners. Indoor Air. 2012 Jun;22(3):235-52. doi: 10.1111/j.1600-0668.2011.00761.x. Epub 2012 Feb 4.
[246] Barn PK, Elliott CT, ... Henderson SB. Portable air cleaners should be at the forefront of the public health response to landscape fire smoke. Environ Health. 2016 Nov 25;15(1):116.
[247] Padró-Martínez LT, Owusu E, ... Durant JL. A Randomized Cross-over Air Filtration Intervention Trial for Reducing Cardiovascular Health Risks in Residents of Public Housing near a Highway. Int J Environ Res Public Health. 2015 Jul 10;12(7):7814-38. doi: 10.3390/ijerph120707814.
[248] Du L, Batterman S, ... Lewis T. Particle Concentrations and Effectiveness of Free-Standing Air Filters in Bedrooms of Children with Asthma in Detroit, Michigan. Build Environ. 2011 Oct;46(11):2303-2313.
[249] EPA. Indoor Air Quality. Ozone Generators that are Sold as Air Cleaners.
[250] Chen TM, Gokhale J, Shofer S, Kuschner WG. Outdoor air pollution: ozone health effects. Am J Med Sci. 2007 Apr;333(4):244-8.
[251] Atkinson RW, Butland BK, ... Anderson HR. Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies. BMJ Open. 2016 Feb 23;6(2):e009493. doi: 10.1136/bmjopen-2015-009493.
[252] Bell ML, Zanobetti A, Dominici F. Who is more affected by ozone pollution? A systematic review and meta-analysis. Am J Epidemiol. 2014 Jul 1;180(1):15-28. doi: 10.1093/aje/kwu115. Epub 2014 May 28.
[253] Zhao T, Markevych I, Romanos M, Nowak D, Heinrich J. Ambient ozone exposure and mental health: A systematic review of epidemiological studies. Environ Res. 2018 Aug;165:459-472. doi: 10.1016/j.envres.2018.04.015. Epub 2018 May 1.
[254] California Air Resources Board. California Certified Air Cleaning Devices.
[255] Terzano C, Di Stefano F, ... Graziani E. Air pollution ultrafine particles: Toxicity beyond the lung. European review for medical and pharmacological sciences 2010 14(10):809-21.
[256] TNO Netherlands. Emissions Of Particulate Matter From Diesel Cars.
[257] Fisk WJ. Health benefits of particle filtration. Indoor Air. 2013 Oct;23(5):357-68. doi: 10.1111/ina.12036. Epub 2013 Mar 21.
[258] EPA. Residential Air Cleaners - A Technical Summary, 3rd Edition.
[259] Allen RW, Carlsten C, ... Brauer M. An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. Am J Respir Crit Care Med. 2011 May 1;183(9):1222-30. doi: 10.1164/rccm.201010-1572OC. Epub 2011 Jan 21.
[260] Barn P, Larson T, ... Brauer M. Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness. J Expo Sci Environ Epidemiol. 2008 Sep;18(5):503-11. Epub 2007 Dec 5.
[261] Bräuner EV, Forchhammer L, ... Loft S. Indoor particles affect vascular function in the aged: an air filtration-based intervention study. Am J Respir Crit Care Med. 2008 Feb 15;177(4):419-25. Epub 2007 Oct 11.
[262] Butz AM, Matsui EC, ... Rand C. A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure. Arch Pediatr Adolesc Med. 2011 Aug;165(8):741-8. doi: 10.1001/archpediatrics.2011.111.
[263] Chen R, Zhao A, ... Kan H. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. J Am Coll Cardiol. 2015 Jun 2;65(21):2279-87. doi: 10.1016/j.jacc.2015.03.553.
[264] Cui X, Li F, ... Zhang JJ. Cardiopulmonary effects of overnight indoor air filtration in healthy non-smoking adults: A double-blind randomized crossover study. Environ Int. 2018 May;114:27-36. doi: 10.1016/j.envint.2018.02.010. Epub 2018 Feb 22.
[265] Kajbafzadeh M, Brauer M, ... Allen RW. The impacts of traffic-related and woodsmoke particulate matter on measures of cardiovascular health: a HEPA filter intervention study. Occup Environ Med. 2015 Jun;72(6):394-400. doi: 10.1136/oemed-2014-102696. Epub 2015 Apr 20.
[266] Karottki DG, Spilak M, ... Loft S. An indoor air filtration study in homes of elderly: cardiovascular and respiratory effects of exposure to particulate matter. Environ Health. 2013 Dec 28;12:116. doi: 10.1186/1476-069X-12-116.
[267] Shao D, Du Y, ... Huang W. Cardiorespiratory responses of air filtration: A randomized crossover intervention trial in seniors living in Beijing: Beijing Indoor Air Purifier StudY, BIAPSY. Sci Total Environ. 2017 Dec 15;603-604:541-549. doi: 10.1016/j.scitotenv.2017.06.095. Epub 2017 Jun 20.
[268] Weichenthal S, Mallach G, ... Sharp D. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor Air. 2013 Jun;23(3):175-84. doi: 10.1111/ina.12019. Epub 2013 Jan 19.
[269] Xu Y, Raja S, ... Wetzel LE. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health. Building and Environment 45(2) 2010, 330-337.
[270] Gourdji S. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec. Environ Pollut. 2018 Oct;241:378-387. doi: 10.1016/j.envpol.2018.05.053. Epub 2018 May 28.
[271] Chen L, Liu C, Zhang L, Zou R, Zhang Z. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5). Sci Rep. 2017 Jun 9;7(1):3206. doi: 10.1038/s41598-017-03360-1.
[272] Schaubroeck T, Deckmyn G,... Verheyen K. Multilayered modeling of particulate matter removal by a growing forest over time, from plant surface deposition to washoff via rainfall. Environ Sci Technol. 2014 Sep 16;48(18):10785-94. doi: 10.1021/es5019724. Epub 2014 Aug 25.
[273] Przybysz A, Sæbø A, Hanslin HM, GawroÅ„ski SW. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci Total Environ. 2014 May 15;481:360-9. doi: 10.1016/j.scitotenv.2014.02.072. Epub 2014 Mar 7.
[274] Liang D, Ma C, ... Chen-Xi Z. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ Sci Pollut Res Int. 2016 Nov;23(21):21176-21186. Epub 2016 Sep 19.
[275] Mo L, Ma Z, ... Yu X. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China. PLoS One. 2015 Oct 27;10(10):e0140664. doi: 10.1371/journal.pone.0140664. eCollection 2015.
[276] Weerakkody U, Dover JW, Mitchell P, Reiling K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci Total Environ. 2018 Sep 1;635:1012-1024. doi: 10.1016/j.scitotenv.2018.04.106. Epub 2018 Apr 24.
[277] Sæbø A, Popek R, ... Gawronski SW. Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ. 2012 Jun 15;427-428:347-54. doi: 10.1016/j.scitotenv.2012.03.084. Epub 2012 May 2.
[278] Chen J, Yu X, Bi H, Fu Y. Indoor simulations reveal differences among plant species in capturing particulate matter. PLoS One. 2017 May 16;12(5):e0177539. doi: 10.1371/journal.pone.0177539. eCollection 2017.
[279] Zhang T, Bai Y, Hong X, Sun L, Liu Y. Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China. PLoS One. 2017 Jun 29;12(6):e0179840. doi: 10.1371/journal.pone.0179840. eCollection 2017.
[280] Macintosh DL, Minegishi T, ... Myatt TA. The benefits of whole-house in-duct air cleaning in reducing exposures to fine particulate matter of outdoor origin: a modeling analysis. J Expo Sci Environ Epidemiol. 2010 Mar;20(2):213-24. doi: 10.1038/jes.2009.16. Epub 2009 Mar 25.
[281] Panis LI. Cycling: health benefits and risks. Environ Health Perspect. 2011 Mar;119(3):a114; author reply a114-5. doi: 10.1289/ehp.1103227.
[282] Daigle CC, Chalupa DC, ... Frampton MW. Ultrafine particle deposition in humans during rest and exercise. Inhal Toxicol. 2003 May;15(6):539-52.
[283] Heyder J, Gebhart J, Rudolf G, et al. Deposition of particles in the human respiratory tract in the size range 0.005–15 µm. J Aerosol Sci 1986;17:811-25.
[284] Bennett WD, Zeman KL, Jarabek AM. Nasal contribution to breathing and fine particle deposition in children versus adults. J Toxicol Environ Health A. 2008;71(3):227-37.
[285] Campbell ME, Li Q, Gingrich SE, Macfarlane RG, Cheng S. Should people be physically active outdoors on smog alert days? Can J Public Health. 2005 Jan-Feb;96(1):24-8.
[286] Rojas-Rueda D, de Nazelle A, Teixidó O, Nieuwenhuijsen MJ. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environ Int. 2012 Nov 15;49:100-9. doi: 10.1016/j.envint.2012.08.009. Epub 2012 Sep 21.
[287] Hartog JJ, Boogaard H, Nijland H, Hoek G. Do the health benefits of cycling outweigh the risks? Cien Saude Colet. 2011 Dec;16(12):4731-44.
[288] de Nazelle A, Nieuwenhuijsen MJ, ...Lebret E. Improving health through policies that promote active travel: a review of evidence to support integrated health impact assessment. Environ Int. 2011 May;37(4):766-77. doi: 10.1016/j.envint.2011.02.003.
[289] Zuurbier M, Hoek G... Brunekreef B. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. 2010 Jun;118(6):783-9. doi: 10.1289/ehp.0901622. Epub 2010 Feb 25.
[290] Hudda N, Kostenidou E, Sioutas C, Delfino RJ, Fruin SA. Vehicle and driving characteristics that influence in-cabin particle number concentrations. Environ Sci Technol. 2011 Oct 15;45(20):8691-7. doi: 10.1021/es202025m. Epub 2011 Sep 19.
[291] Chuang HC, Lin LY, Hsu YW, Ma CM, Chuang KJ. In-car particles and cardiovascular health: an air conditioning-based intervention study. Sci Total Environ. 2013 May 1;452-453:309-13. doi: 10.1016/j.scitotenv.2013.02.097. Epub 2013 Mar 22.
[292] Liu S, Noth E, Eisen E, Cullen MR, Hammond K. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities. Scand J Work Environ Health. 2018 Sep 1;44(5):547-554. doi: 10.5271/sjweh.3735. Epub 2018 May 31.
[293] Burton KA, Whitelaw JL, Jones AL, Davies B. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources. Ann Occup Hyg. 2016 Jul;60(6):771-9. doi: 10.1093/annhyg/mew026. Epub 2016 May 17.
[294] Zhou SS, Lukula S, ... Ijaz MK. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses. J Thorac Dis. 2018 Mar;10(3):2059-2069. doi: 10.21037/jtd.2018.03.103.
[295] Cherrie JW, Apsley A, Cowie ... Loh M. Effectiveness of face masks used to protect Beijing residents against particulate air pollution. Occup Environ Med. 2018 Jun;75(6):446-452. doi: 10.1136/oemed-2017-104765. Epub 2018 Apr 9.
[296] Grinshpun SA, Haruta H, Eninger RM, Reponen T, McKay RT, Lee SA. Performance of an N95 filtering facepiece particulate respirator and a surgical mask during human breathing: two pathways for particle penetration. J Occup Environ Hyg. 2009 Oct;6(10):593-603. doi: 10.1080/15459620903120086.
[297] Shi J, Lin Z, ... Kan H. Cardiovascular Benefits of Wearing Particulate-Filtering Respirators: A Randomized Crossover Trial. Environ Health Perspect. 2017 Feb;125(2):175-180. doi: 10.1289/EHP73. Epub 2016 Aug 26.
[298] Cho KJ, Reponen T, ... Grinshpun SA. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow. Ann Occup Hyg. 2010 Jan;54(1):68-77. doi: 10.1093/annhyg/mep062. Epub 2009 Aug 21.
[299] Winter S, Thomas JH, Stephens DP, Davis JS. Particulate face masks for protection against airborne pathogens - one size does not fit all: an observational study. Crit Care Resusc. 2010 Mar;12(1):24-7.
[300] Brook RD, Rajagopalan S, ... Kaufman JD. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010 Jun 1;121(21):2331-78. doi: 10.1161/CIR.0b013e3181dbece1. Epub 2010 May 10.
[301] Peden DB. The epidemiology and genetics of asthma risk associated with air pollution. J Allergy Clin Immunol. 2005 Feb;115(2):213-9; quiz 220.
[302] Chen Z, Salam MT, ... Gilliland FD. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study. J Thorac Dis. 2015 Jan;7(1):46-58. doi: 10.3978/j.issn.2072-1439.2014.12.20.
[303] Bell ML, Zanobetti A, Dominici F. Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis. Am J Epidemiol. 2013 Sep 15;178(6):865-76. doi: 10.1093/aje/kwt090. Epub 2013 Jul 25.
[304] Ji H, Khurana Hershey GK. Genetic and epigenetic influence on the response to environmental particulate matter. J Allergy Clin Immunol. 2012 Jan;129(1):33-41. doi: 10.1016/j.jaci.2011.11.008.
[305] Hussain S, Laumbach R, ... Kipen H. Controlled exposure to diesel exhaust causes increased nitrite in exhaled breath condensate among subjects with asthma. J Occup Environ Med. 2012 Oct;54(10):1186-91. doi: 10.1097/JOM.0b013e31826bb64c.
[306] Wright RJ, Brunst KJ. Programming of respiratory health in childhood: influence of outdoor air pollution. Curr Opin Pediatr. 2013 Apr;25(2):232-9. doi: 10.1097/MOP.0b013e32835e78cc.
[307] Laumbach RJ. Outdoor air pollutants and patient health. Am Fam Physician. 2010 Jan 15;81(2):175-80.
[308] Rich DQ, Kipen HM, ... Zhang JJ. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA. 2012 May 16;307(19):2068-78. doi: 10.1001/jama.2012.3488.
[309] Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001 Jun 12;103(23):2810-5.
[310] Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health. 2015 Aug;37(4):631-49. doi: 10.1007/s10653-015-9720-1. Epub 2015 Jun 4.
[311] Downs SH, Schindler C, Liu LJ, ... SAPALDIA Team. Reduced exposure to PM10 and attenuated age-related decline in lung function. N Engl J Med. 2007 Dec 6;357(23):2338-47.
[312] Bayer-Oglesby L, Grize L, ... Braun-Fahrländer C. Decline of ambient air pollution levels and improved respiratory health in Swiss children. Environ Health Perspect. 2005 Nov;113(11):1632-7.
[313] Pope CA 3rd, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009 Jan 22;360(4):376-86. doi: 10.1056/NEJMsa0805646.
[314] Schindler C, Keidel D, ... Rochat T. Improvements in PM10 exposure and reduced rates of respiratory symptoms in a cohort of Swiss adults (SAPALDIA). Am J Respir Crit Care Med. 2009 Apr 1;179(7):579-87. doi: 10.1164/rccm.200803-388OC. Epub 2009 Jan 16.
[315] Zhong J, Karlsson O, ... Baccarelli AA. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3503-3508. doi: 10.1073/pnas.1618545114. Epub 2017 Mar 13.
[316] Weichenthal S. Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ Res. 2012 May;115:26-36. doi: 10.1016/j.envres.2012.03.001. Epub 2012 Mar 31.
[317] Auerbach NA, Walker WD, Walker DA. Effects of Roadside Disturbance on Substrate and Vegetation Properties in Arctic Tundra. Ecological Applications 7(1) 1997: 218-235.
[318] Cape JN. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees. Environ Pollut. 1993;82(2):167-80.
[319] Singh S, Elumalai SP, Pal AK. Rain pH estimation based on the particulate matter pollutants and wet deposition study. Sci Total Environ. 2016 Sep 1;563-564:293-301. doi: 10.1016/j.scitotenv.2016.04.066. Epub 2016 Apr 30.
[320] Grantz DA, Garner JH, Johnson DW. Ecological effects of particulate matter. Environ Int. 2003 Jun;29(2-3):213-39.
[321] Eller BM. Road dust induced increase of leaf temperature. Environmental Pollution 1970 13(2) 99-107.
[322] Farmer AM. The effects of dust on vegetation--a review. Environ Pollut. 1993;79(1):63-75.
[323] Bilotta GS1, Burnside NG, ...Davy-Bowker J. Developing environment-specific water quality guidelines for suspended particulate matter. Water Res. 2012 May 1;46(7):2324-32. doi: 10.1016/j.watres.2012.01.055. Epub 2012 Feb 8.
[324] Shao T, Zheng H, ... Zhang B. Influence of environmental factors on absorption characteristics of suspended particulate matter and CDOM in Liaohe River watershed, northeast China. Environ Sci Pollut Res Int. 2017 Aug;24(23):19322-19337. doi: 10.1007/s11356-017-9480-9. Epub 2017 Jul 1.
[325] Baalousha M, Stoll S, ... Le Coustumer P. Suspended particulate matter determines physical speciation of Fe, Mn, and trace metals in surface waters of Loire watershed. Environ Sci Pollut Res Int. 2018 Feb 10. doi: 10.1007/s11356-018-1416-5.
[326] Liu C, Fan C, ... Zhou Q. Effects of riverine suspended particulate matter on post-dredging metal re-contamination across the sediment-water interface. Chemosphere. 2016 Feb;144:2329-35. doi: 10.1016/j.chemosphere.2015.11.010. Epub 2015 Nov 21.
[327] Hudda N, Simon MC, ... Durant JL. Aviation Emissions Impact Ambient Ultrafine Particle Concentrations in the Greater Boston Area. Environ Sci Technol. 2016 Aug 16;50(16):8514-21. doi: 10.1021/acs.est.6b01815. Epub 2016 Aug 4.
[328] Psanis C, Triantafyllou E, ... Biskos G. Particulate matter pollution from aviation-related activity at a small airport of the Aegean Sea Insular Region. Sci Total Environ. 2017 Oct 15;596-597:187-193. doi: 10.1016/j.scitotenv.2017.04.078. Epub 2017 Apr 19.
[329] Hudda N, Simon MC, Zamore W, Durant JL. Aviation-Related Impacts on Ultrafine Particle Number Concentrations Outside and Inside Residences near an Airport. Environ Sci Technol. 2018 Feb 20;52(4):1765-1772. doi: 10.1021/acs.est.7b05593. Epub 2018 Feb 7.
[330] Wayson RL, Fleming GG, Lovinelli R. Methodology to estimate particulate matter emissions from certified commercial aircraft engines. J Air Waste Manag Assoc. 2009 Jan;59(1):91-100.
[331] Bishop AE, Polak JM. Pulmonary epithelium. Methods Enzymol. 2006;418:333-49.
[332] Enkhbat U, Rule AM, ... Williams DL. Exposure to PM2.5 and Blood Lead Level in Two Populations in Ulaanbaatar, Mongolia. Int J Environ Res Public Health. 2016 Feb 15;13(2):214. doi: 10.3390/ijerph13020214.
[333] Chen X, Liu J, ... Pan J. Urban particulate matter (PM) suppresses airway antibacterial defence. Respir Res. 2018 Jan 8;19(1):5. doi: 10.1186/s12931-017-0700-0.
[334] Grunig G, Marsh LM, ... Park SH. Perspective: ambient air pollution: inflammatory response and effects on the lung's vasculature. Pulm Circ. 2014 Mar;4(1):25-35. doi: 10.1086/674902.
[335] Clark B, Masters S, Edwards M. Profile sampling to characterize particulate lead risks in potable water. Environ Sci Technol. 2014 Jun 17;48(12):6836-43. doi: 10.1021/es501342j. Epub 2014 Jun 6.
[336] Shen H, Peters TM, ... Ault AP. Elevated Concentrations of Lead in Particulate Matter on the Neighborhood-Scale in Delhi, India As Determined by Single Particle Analysis. Environ Sci Technol. 2016 May 17;50(10):4961-70. doi: 10.1021/acs.est.5b06202. Epub 2016 May 2.
Get FREE Updates & EXCLUSIVE Content
Join Over 30,000+ Subscribers!