What Is Noise Pollution & Why Does It Devastate Your Health?
You know about noise (pollution) right?
If not, you would probably not be reading here...
Screaming neighbors. Fighting cats. Traffic. Overflying airplanes.
Or maybe there's just a specific sound that's really irritating for you. Perhaps you don't like listening to Britney Spears - even at a low volume. Or, alternatively, you hate listening to Mozart or the Beatles.
Everyone hates certain sounds.
I'll tell all about you my "favorite" noise sources later on in this blog post.
And I'm also (too) acquainted with what's happening with most noise pollution problems. The more you focus on the noise, the more irritating it gets.
I completely understand.
So what's the solution?
In this 3-part series, I'll tell you exactly what you need to know about reducing noise (pollution).
The first step understanding any problem is being aware that there's something wrong in the first place. This blog post series'' first installment takes that step, teaching you about what noise pollution is as well as some common effects.
With noise, most people assume that it's simply an annoying side issue--not a problem. And yet, noise is a societal problem. An enormous problem. In fact, noise is so omnipresent everywhere in society that it can be called "noise pollution".
Just like light pollution, air pollution, water pollution, noise pollution is another one of modern society's created side-effects that influences our health.
Before I dig into the health effects of noise and illustrate you how to deal with it, let's first try to understand how the problem originated in the first place.
I thus arrive at my first installment of the noise pollution series.
Table Of Contents:
Noise Pollution Introduction
What Is Noise Pollution Exactly?
How Noise Pollution Causes Chronic Low-Level Stress In Your Body
Finishing Thoughts - Noise Pollution: A Huge Issue
Noise Pollution Introduction
Just imagine the difference between the following two situations:
Firstly, envision that you're in the woods. Fantasize about the sound of the wind blowing through against the leaves, water running downstream, and birds that are singing:
Secondly, envisage that you're in the following location:
What's happening in the latter case?
Cars are honking, people are talking loudly (and perhaps even screaming), three different types of music may be blasting in the background, and there's also noise emerging from a construction site.
Consciously Hearable Sound And Infra & Subliminal Sound
Moreover, all the noise stays "trapped" in that location due to all the high rise buildings. What's even more amazing is that you're not even consciously hearing all those sounds in the metropolitan city anymore.
You've gotten "used" to such sounds, right?
Wrong...
Even though you might not be consciously hearing noise (in the background) all the time, your health is still affected by that noise.
Yes...
The gist of my argument in this blog post is that your brain can never fully get used to noise pollution. Instead, you can only deal with noise by removing the source of the noise, or by making sure that less noise ends up reaching your ears.
If you don't get rid of excessive noise, your health automatically suffers.
Before diving deep into the topic of sound and noise though, let's first make sure we're all on the same level.
Let me thus give you a definition of both 1) sound; and 2) noise.
Sound Defined
First, sound:
Sound, firstly, is the propagation of waves that are either consciously or subconsciously audible to the brain by using your ears.
Let's explore that definition of sound in some more detail.
Observe that I subsume both conscious hearing of sound and a subconscious hearing of sound under my definition. So, even if you're not consciously aware of a sound, those waves are still registered by your brain.
Why do I include subconsciously hearable sound as well? Well, there are things called "subliminal" sounds, which exceed the human hearing threshold. When subliminal sounds are loud enough, they are still registered by your brain and cause damage...
Another type of sound is infrasound, which falls below the hearing threshold. Windmills, for instance, produce that infrasound that you cannot hear but will affect your physiology.
Noise Defined
Secondly, I need to define noise...
But let's first take a step back and look at how others define "noise":
Noise is often defined subjectively nowadays. One common definition, for example, is that noise is "unwanted sound".
That definition does not work for me at all.
Why?
Because noise has very objective consequences (for your health) at certain levels of loudness. I've therefore decided to combine the objective and subjective domains of noise into one:
The Difference Between Sound And Noise
Noise is sound that causes an unhealthy reaction in your body, either due to its loudness, or your (brain's) subjective dislike of the sound.
Let me explain that definition...
On the one hand, certain sounds can cause an unhealthy reaction in your body, independent of whether you like or dislike that sound. The sound of your favorite music at night when it's played hard enough, for example, will lower your sleep quality, even though you might like that music (at some level).
Why Loudness Of Noise Doesn't Always Matter
Another example?
An 80dB sound level at night - even though you've convinced yourself that you've gotten "used" to that sound - will always be damaging.
Some sounds, on the other hand, can create problems independent of their loudness. If your husband is whispering your name to get attention when you're trying to focus on a complex task, the sound can be distracting independent of its loudness.
Your husband is thus creating noise in that instance.
Hearing a baby cry, moreover, will also trigger a response in you, even though the sound may not be very loud.
So overall, if a sound either 1) reaches a certain loudness threshold; or 2) is disliked by you, that sound becomes noise.
Simple...
(Advanced explanation: some sounds are even inherently disliked by human beings, such as low-toned roars in the animal kingdom, which signal aggression, or the sound of a snake, for example. Those sounds have been ingrained in our very being through millions of years of evolution.)
Why Noise Matters
Now, let's consider the health effects of noise. Noise pollution is not a "side-issue".
What if I told you that through noise pollution:
- your children will perform poorer in school
- you'll continually have a continuous low-level of stress in your life
- sleep becomes worse
- you're getting high blood pressure and increase your chance for heart attacks and strokes
- disturbs wildlife in your area
- and much, much more.
I'll explore all these effects in detail in a subsequent section.
First, let's have a more precise look at what sound and noise pollution exactly consists of...
What Is Noise Pollution Exactly?
Noise pollution does not just happen in modern societies. Instead, noise has been a problem as old as civilization.
Even in ancient Greece, cities allocated specialized areas for merchants and other occupations which are intrinsically associated with noise creation, which were placed outside the city walls.
Ancient Greece: the birthplace of
Western Civilization - and also the first noise laws.
People have certainly been complaining about noise for centuries as well.
Example?
Schopenhauer On Sound
Arthur Schopenhauer - a German philosopher who mainly lived in the 19th-century - is known for his interesting rants on noise.
Let me give you a few excerpts.
First, Schopenhauer talks about how noise increases the difficulty of thinking clearly:
"Occasionally it happens that some slight but constant noise continues to bother and distract me for a time before I become distinctly conscious of it. All I feel is a steady increase in the labor of thinking — just as though I were trying to walk with a weight on my foot."
Schopenhauer was instrumental in giving me an appreciation for the noise problem.
Another excerpt:
"Noisy interruption is a hindrance to concentration. That is why distinguished minds have always shown such an extreme dislike to disturbance in any form, as something that breaks in upon and distracts their thoughts. Above all have they been averse to that violent interruption that comes from noise."
Some other passages demonstrate Schopenhauer's deep-seated hatred for noise as well. Here's yet another one:
"The general toleration of unnecessary noise — the slamming of doors, for instance, a very unmannerly and ill-bred thing — is direct evidence that the prevailing habit of mind is dullness and lack of thought."
Of course, Schopenhauer's conception of noise is very radical. Schopenhauer even wrote an entire essay on noise.
(Of course, I'm doing somewhat of the same thing now - throwing both my passion and ability for logical argumentation against the problem.)
Interestingly enough, despite his flowery language, some of Schopenhauer's claims were scientifically verified in the 20th century: noise does indeed interrupts and lowers your higher-level thinking ability.
In that time you had to rely on intuition to know whether someone is too loud or not. Today is different, fortunately. Through modern day scientific instruments, you're able to assess sound levels extremely reliably.
How?
The Decibel Measurement Of Sound
By measuring "decibel" level of sound...
(Advanced explanation: in the early 19th century, the field of psychology was still subsumed under philosophy, and strict psychological experiments were still almost a century away. Measurement of sound was not standardized nor well developed back then.)
Today, "decibels" (dB) are the most universally used measurement-unit for sound levels.
To be exact, dB measures the loudness of a sound. dB measurements commonly range from 0 to (roughly) 200. The higher the dB measurement, the louder the sound.
What's very important to understand about dB measurements is that it's a mathematically "logarithmic" scale. Let me explain what the word "logarithmic" means in relation to sound - which is easiest demonstrated through an example:
Assume that you're exposed to a sound of 30dB - which equals the sound levels of standing in the woods when nothing exciting really happens. Sure, you might hear some insects, the wind blowing, and whistling leaves, but overall, it's pretty quiet.
The Logarithmic Nature Of The Decibel Scale Explained
If you compare that 30dB measurement to a 40dB measurement, the sound doesn't get 33% louder. Instead, for every 10dB increase in sound, the loudness increases with a factor of 10. Phrased differently, as there's a 10dB difference between 30dB and 40dB, a 40dB sound level is 10 times as loud as 30dB.
Another example:
Many people, when comparing 30db with 60dB, would think that 60dB is twice as loud as 30dB. Let's calculate whether that assumption is true. First, observe that there's a 30dB difference between 30dB and 60dB. For every 10dB increase, the sound becomes 10 times as loud. A 30dB increase thus makes a sound 10*10*10 (10^3) = 1,000 times as loud.
Crazy right?
The dB scale is developed that way to be easily express sound levels without having to work with extremely large numbers. A 70dB and 140dB sound level have a 10,000,000-fold difference in sound intensity.
Why that scale?
Comparing 30dB to 150dB, for example, would force you to deal with many digits when doing calculations. A dB logarithmic scale is an easy-to-use tool to efficiently express loudness levels.
Let me attempt to read your mind though:
You must be thinking by now: "Bart, how loud are my neighbors during the nighttime?"
Let's find out...
Decibel Exposure Chart
I've charted different sound (and noise) exposure levels:[1; 2; 3; 42]
I'll give you some examples of loudness at each dB level:
10dB - Your breathing, the Grand Canyon at night, or the sound of dropping a pin
20dB - Leaves in the forest, whispering of a single person, a rural area with snow
30dB - A common quiet rural area sound level, or running computer.
40dB - Multiple people whispering in a classroom, library sound, birds singing
50dB - Regular conversations, very light traffic, background music, dishwasher
60dB - Air conditioner, bypassing car at 50 miles per hour, restaurant conversation
Now, at 65dB noise can already become damaging (if you're exposed for a long time):
70dB - Showering, music at regular-loudness, bypassing trucks, vacuum cleaner
80dB - Drilling machine, your morning alarm clock, a bypassing freight train
90dB - Low-flying Boeing 737, mp3 player, lawnmower
100dB - Subway car, food processor, airplane take-off, motorcycle
110dB - A rock concert, jackhammer, or an auto horn at a 3-yard distance
120dB - Classroom filled with screaming children, thunder impact
130dB - Football stadium noise peak
At this point, noise starts to generate ear-pain:
140dB - Jet engine take-off, firecrackers
150dB - Rock concert peak near speakers, fighter jet take-off
160dB - Weapons firing (such as a shotgun),
180dB - Rocket launch
194dB - Official maximum sound level - at this point, a sound is converted into "shockwaves".
Birds singing in the morning at 40dB.
A thousand times less loud than bypassing trucks
Some Noise Examples Explained
So how about your noisy neighbor? Let's analyze that neighbor's sound level.
Depending on his location, he's probably putting out 60-90dB from the source. Fortunately, some of that noise is filtered by the walls of your house...
What can you conclude from seeing that list of noise levels?
Let's return to our earlier example of comparing the forest to the city in terms of noise levels.
Sound levels in the forest are located at a 40dB level--the inner city, with bypassing cars at 50 miles and hours, and trucks, ends up with sound levels of roughly 60 to 70dB.
Let's assume - for the sake of argument - that cities have sound levels of 60dB. In that case, there's a 20dB difference between the forest and an inner-city.
Again, it's very important to realize that 60dB is not 50% louder as 40dB.
Instead, a 20dB difference entails a 10^2 (10*10) = 100 fold increase in the sound level. Phrased differently, the energy of sound input of your ears is 100 times as strong in an inner city compared to a forest.
And the example does not even take even louder metropolitan cities into account, that often have sound levels up to 80-90dB.
Absolutely amazing (or crazy) difference right?
That conclusion tells you something about human perception. Even though it might seem or feel that there's no extreme difference between an inner-city and forest in terms of sound levels, the difference is absolutely enormous.
So, what happens next? Let's say you're living in a big city with lots of noise? In that case, your ears and brain have to process that sound. While I'm taking a deep-dive into the health consequences of noise soon, let's first put the noise levels of cities into more perspective...
Decibel Noise Levels Of Several Cities
Let's, therefore, explore the sound levels of several cities, to help you understand how much sound is commonly present there...
You might be sceptical of my assessment, but I've got lots of solid data to back up my claims:
Many cities - even indoor areas, have sound levels of 60-90dB.[41; 44; 45; 46; 47; 48; 49; 50; 54; 63; 68; 70; 71; 82; 193; 194; 195; 196; 197; 289; 290; 291]
The mean street-level sound in New York city is 70dB+, in Hong Kong sometimes exceeds the 90dB level. Even during the nighttime, sound levels in Hong can approximate 65dB.
Such noise levels have also been found in a smaller Turkish city during the daytime. A 70dB+ level is thus by no means limited to big metropolitan cities.
Other examples of smaller cities?
In Kalamazoo County, Michigan, average daytime noise levels approached 80dB. 70% of people exceeded safe sound level exposure thresholds during the daytime.
You might be thinking: "but those measurements were taken outside".
You're absolutely correct in that assessment.
I've also got a reply to that statement though...
The difference between outdoor and indoor noise levels have also been studied: in Tokyo, there's only a 10dB difference between outdoor and indoor environments. Noise levels of 55dB outside already make 50% of people feel uncomfortable inside - let alone 80 or 90dB.
And yet, residents, industrial workers, and office employees are routinely exposed to 60dB indoor sound levels. Why? Again, 70dB outside translated to 60dB that's commonly experienced inside...
Indoor Noise Levels In Big Cities
In buildings for some purposes, lots of noise is also generated indoor.
Noise levels in classrooms in Greece and Hong Kong reach as high as 70dB during the day. In London, that's 60dB, in Sweden, 40-70dB.
In many offices too, noise levels easily reach 60-80dB levels.
Industrial buildings?
The same levels, or worse. Noise pollution is thus not restricted to being outside in the city. Noise is everywhere in modern society...
The height of human civilization?
Or the precursor to its downfall?
How Indoor Noise Levels Are Determined
Of course, the difference between sound levels of indoor and outdoor environments varies for different building types.
Different types of windows (and whether they're opened), walls, ventilation shafts, ceiling types, building height, and doors, all influence how much outdoor sound penetrates indoor.
Opened windows allow for a 10dB difference between outdoor and indoor sound levels. Tilted windows lower that value, and closed windows prevent a sound buildup of as much as 30dB (if you're really stopping all air flow).
Due to the many variables that influence how much sound penetrates into buildings, there's strict no algorithm or formula that can adequately calculate how buildings influence sound levels.
It's, therefore, best to determine the net amount of outdoor noise pollution that reaches indoor on a case-by-case basis. You thus have to measure levels inside buildings. A decibel meter phone app can do the trick for that measurement!
Indoor Air Pollution: Why Closing Windows 24/7 Isn't Healthy
But there's yet another problem:
While closing your windows inside a city might sound smart to stop noise from entering, you'll build up lots of toxic air through that method.
In cities, indoor levels of pollutants reach up to 10 times as high levels as outdoor pollutant levels.[72; 96] You thus need fresh air, even in the city, and cannot close your windows all the time.
Keeping your windows closed also creates CO2 build up and lowers oxygen levels so that your breathing and brain function is impaired.[73; 74; 75] It's best to let CO2 leave your home continually, even during the nighttime.
No airflow in your home equals improper breathing...
In an inner city, you're thus confronted with a double bind: choosing between either more noise pollution or more air pollution.
Neither option is optimal...
How Indoor Noise Levels Are Determined
So, how are indoor noise levels influenced?
The net-level of noise you're exposed to depends on many variables such as:
- how far you're removed from the source of the noise. An airplane flying at 2,000 feet will give less noise pollution than an airplane located at 1,000 feet
- the direction that the soundwaves of the noise are projected in. If road traffic soundwaves are directly projected at your windows, you'll get more net noise exposure than when soundwaves do not directly travel into your direction.
- to what extent sound is reflected towards your location. Sound barriers might reflect some of the sounds away from your location - or towards you instead, if you're in bad luck.
- how different types of noise add up. If you're exposed to a few 70dB noise sources, for example, you'll get a net-total or 73dB noise exposure. A 60dB noise source that's added to an existing 70dB noise source increases your net exposure by negligible amounts though.
- seasonal variation. Differences in vegetation or snow on the surface can change (indoor) dB measurements.
I'm not going into full detail of how quick or slowly dB readings decline with distance, as that is a complex calculation.
The bottom line is that noise calculations can be complicated. Again, if you want to know your indoor noise levels, you have to measure them. There's a measurement mini-guide included in the "Frequently Asked Questions" section at the bottom of this article.
(And if you want more information on the physics of sound, just read this book.)
Noise Pollution Demographics
A natural question that would emerge, based on that categorization of noise levels, is exactly how many people are exposed to that noise.[4; 5; 6; 7; 11; 66; 67; 278]
Here's where things get even crazier...
The numbers are higher than you think:
- In 1981 - when the US population was much smaller than today - more than 100 million Americans were exposed to excessive noise levels. Ten years earlier - in 1970 - 30 million people were exposed to noise levels that were so high that they directly caused hearing loss, and 44 million lives were negatively affected by highways or overflying aircraft.
- Today, one in three Americans are in danger of being exposed to excessive noise levels.
- Hearing loss is the most frequently reported work-related negative health effect in the US.
- 1 In 5 Americans have hearing loss at one ear, and 1 in 8 have hearing loss in both ears. In 1971, 13 million people had hearing loss problems, while in 2011 that number had increased to 48 million people. Correcting for an increase in the US population, that number is still double as high as in 1971.
- In the European Union in 2018, 125 million people are affected by noise levels greater than 55dB. 37 Million people are subjected to noise levels greater than 65dB. The EU has a population of ~450M.
- One in five Europeans loses sleep every night because of noise.
- Compared to Europe and the US, noise levels are much worse in Asian cities. Depending on the source you refer to, two of the three most-noise pollutive cities are located in Asia: Hongkong and Singapore.
Is The Noise Pollution Problem Getting Better Or Worse Over Time?
So, what's your conclusion? Is the problem of noise pollution improving or getting worse?
Data clearly demonstrates the latter case to be true, despite governments' attempts at curbing noise.
Let's look at such legislation:
In the EU, proposals have been made to set the limit of noise pollution at a 40dB maximum for night times.[9]
Noise affects you differently during the day and night. The sound of a bypassing truck or a vacuum cleaner, for example, might be somewhat noticeable during the day but can be extremely irritating at night.
During the nighttime, a small amount of noise can already wake you up. Some sources even argue that the 40dB threshold is already too high, and that sound levels between 35 and 40dB already impair sleep quality.
Noise As The Most Common Environmental Complaint
And yet, noise pollution is barely taken into account by most healthcare experts in modern society. That assessment is very strange because noise pollution is the most common complaint that people have regarding their living environment.[16]
So, it's not water pollution or air pollution that irritates people most, but noise pollution.
Common Sources Of Noise Pollution
Your naturally emerging question is probably: "what then, are the most common sources of noise pollution?"[17; 18; 76; 77; 93]
Here they are:
- busy roads
- railways, especially those used for freight transfer, and subways
- industry
- construction
- hospital settings (intensive care units are especially damaging)
- loud areas such as dance clubs (especially during the night)
- airports
But that's not all of course:
Church bells, wind turbines, and neighbors throwing parties or people fighting are other reasons why noise pollution exists. Lawnmowers are a frequent source of noise as well, although newer models emit closer to a 70dB sound level instead of the 90dB sound level of the past.
Going clubbing, to a bar or a restaurant? You'll have a 50% chance of getting exposed to excessive sound levels.
Another crazy fact?
Intensive care units are the most damaging noise pollution locations in hospitals.
Additionally, the general sound levels in hospitals have been increasing 10dB in the last few decades. Sound levels in hospitals now commonly exceed the WHO prescribed maximum noise threshold by as much as 20dB.
Quite a dangerous place to spend your time, hospitals...
Fighting cats: nature's original form of
urban noise pollution.
Now you've learned about the dB scale and how noise is omnipresent in our modern society, in the next installment I'll have a look at noise's health effects on your body.
Things will get worse before they get better...
Finishing Thoughts: Noise Pollution Is A Huge Issue
I hope you're convinced that noise pollution is a huge potential issue.
In fact, more and more places of this planet now have the problem of noise.
I hope that with this blog post I've made you more aware that there's a problem in the first place. That thesis becomes much clearer once you read the second installment of this series, regarding the health effects of noise pollution.
And yet, from a very basic emotional or feeling perspective, you probably already know there's something to noise. The issue is that you never noticed how intricate the problem was.
Becoming consciously aware is very simple as well though: download a decibel meter on your smartphone and begin measuring your environment. Those measurements lead to data, that data leads to understanding, and hopefully, that understanding leads to better choices.
You deserve the best!
This is a post by Bart Wolbers. Bart finished degrees in Physical Therapy (B), Philosophy (BA and MA), Philosophy of Science and Technology (MS - Cum Laude), and Clinical Health Science (MS), and is currently a health consultant at Alexfergus.com.
Found This Article Interesting? Then You Might Like:
[1] IAC Acoustics. Comparative Examples Of Noise Levels.
[2] Dutch Wikipedia on Decibel Measurements
[3] Noisehelp.com. Noise Level Chart From 0-180 Decibels
[4] Simpson M, Bruce R. Washington, DC: U.S. Environmental Protection Agency; 1981. Noise in America: Extent of the Noise Problem. (Report 550/9-81-101)
[5] Noise Control Act. Public Law 1972, pp. 92-574.
[6] European Community. The green paper on future noise policy, 1996.
[7] European Commission. Noise In Europe 2014. EEA Report No 10/2014.
[8] WHO. Prevention of Noise-Induced Hearing Loss. WHO-PDH Informal Consultation Report, Geneva; 1997.
[9] WHO night noise guidelines for Europe. 2009.
[10] Network for Public Health Law. National Survey of State and Local Noise Activity. 2013.
[11] Hammer MS, Swinburn TK, Neitzel RL. Environmental noise pollution in the United States: developing an effective public health response. Environ Health Perspect. 2014 Feb;122(2):115-9. doi: 10.1289/ehp.1307272. Epub 2013 Dec 5.
[12] Anderson LM, Mulligan BE, Goodman LS. Effects of vegetation on human response to sound. J Arboriculture 1984;10:45-9.
[13] Halperin D. Environmental noise and sleep disturbances: A threat to health? Sleep Sci. 2014 Dec;7(4):209-12. doi: 10.1016/j.slsci.2014.11.003. Epub 2014 Nov 15.
[14] Hume KI, Brink M, Basner M. Effects of environmental noise on sleep. Noise Health. 2012 Nov-Dec;14(61):297-302. doi: 10.4103/1463-1741.104897.
[15] Basner M, Babisch W,... Stansfeld S. Auditory and non-auditory effects of noise on health. Lancet. 2014 Apr 12;383(9925):1325-32. doi: 10.1016/S0140-6736(13)61613-X. Epub 2013 Oct 30.
[16] Muzet A. Environmental noise, sleep and health. Sleep Med Rev. 2007 Apr;11(2):135-42. Epub 2007 Feb 20.
[17] Dora C. A different route to health: implications of transport policies. BMJ. 1999 Jun 19;318(7199):1686-9.
[18] Stanners D, Bordeau P. Europe’s environment. Copenhagen: European Environment Agency; 1995
[19] Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017 May 19;9:151-161. doi: 10.2147/NSS.S134864. eCollection 2017.
[20] Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999 Oct 23;354(9188):1435-9.
[21] Orzeł-Gryglewska J. Consequences of sleep deprivation. Int J Occup Med Environ Health. 2010;23(1):95-114. doi: 10.2478/v10001-010-0004-9.
[22] Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010 Sep;59(9):2126-33. doi: 10.2337/db09-0699. Epub 2010 Jun 28.
[23] Spiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009 May;5(5):253-61. doi: 10.1038/nrendo.2009.23.
[24] Schmid SM, Hallschmid M, Jauch-Chara K, Born J, Schultes B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men.J Sleep Res. 2008 Sep;17(3):331-4. doi: 10.1111/j.1365-2869.2008.00662.x. Epub 2008 Jun 28.
[25] Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004 Dec;1(3):e62. Epub 2004 Dec 7.
[26] Basner M, Samel A. Nocturnal aircraft noise effects. Noise Health. 2004 Jan-Mar;6(22):83-93.
[27] Basner M., Samel A. Effects of nocturnal aircraft noise on sleep structure. Somnologie. 2005;9(2):84–95.
[28] Basner M, Griefahn B, Berg Mv. Aircraft noise effects on sleep: mechanisms, mitigation and research needs. Noise Health. 2010 Apr-Jun;12(47):95-109. doi: 10.4103/1463-1741.63210.
[29] Perron S, Tétreault LF, King N, Plante C, Smargiassi A. Review of the effect of aircraft noise on sleep disturbance in adults. Noise Health. 2012 Mar-Apr;14(57):58-67. doi: 10.4103/1463-1741.95133.
[30] Basner M, Samel A, Isermann U. Aircraft noise effects on sleep: application of the results of a large polysomnographic field study. J Acoust Soc Am 2006;119:2772-84.
[31] Basner M, Siebert U. Markov-Prozesse zur Vorhersage fluglδrmbedingter Schlafstφrungen. Somnologie 2006;10:176-91.
[32] Selander J., Bluhm G., Theorell T., Pershagen G., Babisch W., Seiffert I. Saliva cortisol and exposure to aircraft noise in six European countries. Environ Health Perspect. 2009;117(11):1713–1717.
[33] Lefèvre M, Carlier MC, ... Evrard AS. Effects of aircraft noise exposure on saliva cortisol near airports in France. Occup Environ Med. 2017 Aug;74(8):612-618. doi: 10.1136/oemed-2016-104208. Epub 2017 Apr 25.
[34] Spreng M. Possible health effects of noise induced cortisol increase. Noise Health. 2000;2(7):59-64.
[35] Gesi M, Lenzi P, Alessandri MG, Ferrucci M, Fornai F, Paparelli A. Brief and repeated noise exposure produces different morphological and biochemical effects in noradrenaline and adrenaline cells of adrenal medulla. J Anat. 2002 Feb;200(Pt 2):159-68.
[36] Jones CE, Monfils MH. Fight, Flight, or Freeze? The Answer May Depend on Your Sex. Trends Neurosci. 2016 Feb;39(2):51-53. doi: 10.1016/j.tins.2015.12.010. Epub 2016 Jan 6.
[37] Roelofs K. Freeze for action: neurobiological mechanisms in animal and human freezing. Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). pii: 20160206. doi: 10.1098/rstb.2016.0206.
[38] Fruhstorfer B, Pritsch MG, ... Wesemann W. Effects of daytime noise load on the sleep-wake cycle and endocrine patterns in man. III. 24 hours secretion of free and sulfate conjugated catecholamines. Int J Neurosci. 1988 Nov;43(1-2):53-62.
[39] Waye KP, Bengtsson J, ... Clow A. Low frequency noise enhances cortisol among noise sensitive subjects during work performance. Life Sci. 2002 Jan 4;70(7):745-58.
[40] Green A, Jones AD, Sun K, Neitzel RL. The Association between Noise, Cortisol and Heart Rate in a Small-Scale Gold Mining Community-A Pilot Study. Int J Environ Res Public Health. 2015 Aug 21;12(8):9952-66. doi: 10.3390/ijerph120809952.
[41] McAlexander TP, Gershon RR, Neitzel RL. Street-level noise in an urban setting: assessment and contribution to personal exposure. Environ Health. 2015 Feb 28;14:18. doi: 10.1186/s12940-015-0006-y.
[42] Chepesiuk R. Decibel hell: the effects of living in a noisy world. Environ Health Perspect. 2005 Jan;113(1):A34-41.
[43] National Institute for Occupational Safety and Health (NIOSH). 2013, Noise and hearing loss prevention.
[44] Gökdag M. Study of the road traffic noise in Erzurum-Turkey. Iranian J Environ Health Sci Eng. 2012 Dec 11;9(1):22. doi: 10.1186/1735-2746-9-22.
[45] Kikuchi K, Sakai M. Noise control standards in the city of Tokyo. Auris Nasus Larynx. 1986;13 Suppl 1:S51-4.
[46] Sarantopoulos G, Lykoudis S, Kassomenos P. Noise levels in primary schools of medium sized city in Greece. Sci Total Environ. 2014 Jun 1;482-483:493-500. doi: 10.1016/j.scitotenv.2013.09.010. Epub 2013 Sep 27.
[47] Chan KM, Li CM, Ma EP, Yiu EM, McPherson B. Noise levels in an urban Asian school environment. Noise Health. 2015 Jan-Feb;17(74):48-55. doi: 10.4103/1463-1741.149580.
[48] Shield B, Dockrell JE. External and internal noise surveys of London primary schools. J Acoust Soc Am. 2004 Feb;115(2):730-8.
[49] Lundquist P, Holmberg K, Burström L, Landström U. Sound levels in classrooms and effects on self-reported mood among school children. Percept Mot Skills. 2003 Jun;96(3 Pt 2):1289-99.
[50] King G, Roland-Mieszkowski M, Jason T, Rainham DG. Noise levels associated with urban land use. J Urban Health. 2012 Dec;89(6):1017-30. doi: 10.1007/s11524-012-9721-7.
[51] Health Council of the Netherlands: Committee on an Uniform Noise Metric. Assessing Noise Exposure for Public Health Purposes. nr 1997/23E. The Hague: Health Council of the Netherlands, 1997.
[52] Leon Bluhm G, Berglind N, Nordling E, Rosenlund M. Road traffic noise and hypertension. Occup Environ Med. 2007 Feb;64(2):122-6. Epub 2006 Oct 19.
[53] To WM, Mak CM, Chung WL. Are the noise levels acceptable in a built environment like Hong Kong? Noise Health. 2015 Nov-Dec;17(79):429-39. doi: 10.4103/1463-1741.169739.
[54] New York, USA: The United Nations Department of Economic and Social Affairs; 2013. The United Nations Department of Economic and Social Affairs UNESA. World Urbanization Prospects — The 2012 Revision; p. 1
[55] Torija AJ, Genaro N, Ruiz DP, Ramos-Ridao A, Zamorano M, Requena I. Priorization of acoustic variables: Environmental decision support for the physical characterization of urban sound environments. Build Environ. 2010;45:1477–89.
[56] Michaud DS, Keith SE, McMurchy D. Noise annoyance in Canada. Noise Health. 2005 Apr-Jun;7(27):39-47.
[57] Fidell S, Barber DS, Schultz TJ. Updating dosage-effect relationship for the prevalence of annoyance due to general transportation noise. J Acoust Soc Am. 1991;89:221–33.
[58] Stallen PJ. A theoretical framework for environmental noise annoyance. Noise Health. 1999;1(3):69-80.
[59] Fields JM. Reactions to environmental noise in an ambient noise context in residential areas. J Acoust Soc Am. 1998;104:2245–60.
[60] Wong HM, Mak CM, Xu YF. A four-part setting on examining the anxiety-provoking capacity of the sound of dental equipment. Noise Health. 2011 Nov-Dec;13(55):385-91. doi: 10.4103/1463-1741.90291.
[61] Miedema HM. Relationship between exposure to multiple noise sources and noise annoyance. J Acoust Soc Am. 2004 Aug;116(2):949-57.
[62] Chang TY, Liu CS, Bao BY, Li SF, Chen TI, Lin YJ. Characterization of road traffic noise exposure and prevalence of hypertension in central Taiwan. Sci Total Environ. 2011 Feb 15;409(6):1053-7. doi: 10.1016/j.scitotenv.2010.11.039. Epub 2010 Dec 22.
[63] To WM, Ip RC, Lam GC, Yau CT A multiple regression model for urban traffic noise in Hong Kong. J Acoust Soc Am. 2002 Aug;112(2):551-6.
[64] National Institute on Deafness and Other Communication Disorders. Noise induced hearing loss.
[65] US Environmental Protection Agency. Information on levels of environmental noise requisite to protect public health and welfare with an adequate margin of safety. 1974.
[66] Ries PW. Prevalence and characteristics of persons with hearing trouble: United States, 1990–1991
[67] Lin FR, Niparko JK, Ferrucci L. Hearing loss prevalence in the United States. Arch Intern Med. 2011 Nov 14; 171(20):1851-2.
[68] Kim MK, Barber C, Srebric J. Traffic noise level predictions for buildings with windows opened for natural ventilation in urban environments. Science and Technology for the Built Environment. 2017, 27(5).
[69] Beutel ME, Jünger C, ... Münzel T. Noise Annoyance Is Associated with Depression and Anxiety in the General Population- The Contribution of Aircraft Noise. PLoS One. 2016 May 19;11(5):e0155357. doi: 10.1371/journal.pone.0155357. eCollection 2016.
[70] Locher B, Piquerez A, ... Wunderli JM. Differences between Outdoor and Indoor Sound Levels for Open, Tilted, and Closed Windows. Int J Environ Res Public Health. 2018 Jan 18;15(1). pii: E149. doi: 10.3390/ijerph15010149.
[71] Thorsson P, Persson Waye K, ... Forssén J. Low-frequency outdoor-indoor noise level difference for wind turbine assessment. J Acoust Soc Am. 2018 Mar;143(3):EL206. doi: 10.1121/1.5027018.
[72] Kankaria A, Nongkynrih B, Gupta SK. Indoor air pollution in India: implications on health and its control. Indian J Community Med. 2014 Oct;39(4):203-7. doi: 10.4103/0970-0218.143019.
[73] Strøm-Tejsen P, Zukowska D, Wargocki P, Wyon DP. The effects of bedroom air quality on sleep and next-day performance. Indoor Air. 2016 Oct;26(5):679-86. doi: 10.1111/ina.12254. Epub 2015 Nov 5.
[74] Ellingsen I, Sydnes G, Hauge A, Zwart JA, Liestøl K, Nicolaysen G. CO2 sensitivity in humans breathing 1 or 2% CO2 in air. Acta Physiol Scand. 1987 Feb;129(2):195-202.
[75] Xu F, Uh J, ... Lu H. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab. 2011 Jan;31(1):58-67. doi: 10.1038/jcbfm.2010.153. Epub 2010 Sep 15.
[76] Darbyshire JL, Young JD. An investigation of sound levels on intensive care units with reference to the WHO guidelines. Crit Care. 2013 Sep 3;17(5):R187. doi: 10.1186/cc12870.
[77] Filus W, Lacerda AB, Albizu E. Ambient Noise in Emergency Rooms and Its Health Hazards. Int Arch Otorhinolaryngol. 2015 Jul;19(3):205-9. doi: 10.1055/s-0034-1387165. Epub 2014 Aug 25.
[78] Spira-Cohen A, Caffarelli A, Fung L. Pilot study of patron sound level exposure in loud restaurants, bars, and clubs in New York city. J Occup Environ Hyg. 2017 Jul;14(7):494-501. doi: 10.1080/15459624.2017.1296234.
[79] Fietze I, Barthe C, ... Penzel T. The effect of room acoustics on the sleep quality of healthy sleepers. Noise Health. 2016 Sep-Oct;18(84):240-246. doi: 10.4103/1463-1741.192480.
[80] Maschke C, Hecht K, Wolf U. Nocturnal awakenings due to aircraft noise. Do wake-up reactions begin at sound level 60 dB(A)? Noise Health. 2004 Jul-Sep;6(24):21-33.
[81] Basner M, Müller U, Elmenhorst EM. Single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Sleep. 2011 Jan 1;34(1):11-23.
[82] Neitzel RL, Heikkinen MS, Williams CC, Viet SM, Dellarco M. Pilot study of methods and equipment for in-home noise level measurements. Appl Acoust. 2015 Jan 15;102:1-11.
[83] Li HN, Chau CK, Tang SK. Can surrounding greenery reduce noise annoyance at home? Sci Total Environ. 2010 Sep 15;408(20):4376-84. doi: 10.1016/j.scitotenv.2010.06.025. Epub 2010 Jul 16.
[84] Gidlöf-Gunnarsson A, Öhrström E. Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landscape and Urban Planning Volume 83, Issues 2–3, 19 November 2007, Pages 115-126
[85] Joynt JL, Kang J. The influence of preconceptions on perceived sound reduction by environmental noise barriers. Sci Total Environ. 2010 Sep 15;408(20):4368-75. doi: 10.1016/j.scitotenv.2010.04.020. Epub 2010 May 21.
[86] Hu RF, Jiang XY, ... Zhang YH. Effects of earplugs and eye masks on nocturnal sleep, melatonin and cortisol in a simulated intensive care unit environment. Crit Care. 2010;14(2):R66. doi: 10.1186/cc8965. Epub 2010 Apr 18.
[87] Litton E, Elliott R, Thompson K. Earplugs in the ICU: To sleep, to dream. Crit Care. 2018 Feb 22;22(1):48. doi: 10.1186/s13054-018-1954-8.
[88] Demoule A, Carreira S, ... Similowski T. Impact of earplugs and eye mask on sleep in critically ill patients: a prospective randomized study. Crit Care. 2017 Nov 21;21(1):284. doi: 10.1186/s13054-017-1865-0.
[89] Yazdannik AR, Zareie A, Hasanpour M, Kashefi P. The effect of earplugs and eye mask on patients' perceived sleep quality in intensive care unit. Iran J Nurs Midwifery Res. 2014 Nov;19(6):673-8.
[90] Litton E, Elliott R, Ferrier J, Webb SAR. Quality sleep using earplugs in the intensive care unit: the QUIET pilot randomised controlled trial. Crit Care Resusc. 2017 Jun;19(2):128-133.
[91] Le Guen M, Nicolas-Robin A, Lebard C, Arnulf I, Langeron O. Earplugs and eye masks vs routine care prevent sleep impairment in post-anaesthesia care unit: a randomized study. Br J Anaesth. 2014 Jan;112(1):89-95. doi: 10.1093/bja/aet304. Epub 2013 Oct 29.
[92] Wallace CJ, Robins J, Alvord LS, Walker JM. The effect of earplugs on sleep measures during exposure to simulated intensive care unit noise. Am J Crit Care. 1999 Jul;8(4):210-9.
[93] Locihová H, Axmann K, Padyšáková H, Fejfar J. Effect of the use of earplugs and eye mask on the quality of sleep in intensive care patients: a systematic review. J Sleep Res. 2018 Jun;27(3):e12607. doi: 10.1111/jsr.12607. Epub 2017 Sep 25.
[94] Amundsen AH, Klæboe R, Aasvang GM. Long-term effects of noise reduction measures on noise annoyance and sleep disturbance: the Norwegian facade insulation study. J Acoust Soc Am. 2013 Jun;133(6):3921-8. doi: 10.1121/1.4802824.
[95] Saleh S, Woskie S, Bello A. The Use of Noise Dampening Mats to Reduce Heavy-Equipment Noise Exposures in Construction. Saf Health Work. 2017 Jun;8(2):226-230. doi: 10.1016/j.shaw.2016.09.006. Epub 2016 Nov 3.
[96] Stansfeld SA. Noise Effects on Health in the Context of Air Pollution Exposure. Int J Environ Res Public Health. 2015 Oct 14;12(10):12735-60. doi: 10.3390/ijerph121012735.
[97] Manuel J. Clamoring for quiet: new ways to mitigate noise. Environ Health Perspect. 2005 Jan;113(1):A46-9.
[98] Ebenhardt JL, The disturbance of the sleep of prepubertal children by road traffic noise as studied in the home. January 1990
[99] Gupta A, Gupta A, Jain K, Gupta S. Noise Pollution and Impact on Children Health. Indian J Pediatr. 2018 Apr;85(4):300-306. doi: 10.1007/s12098-017-2579-7. Epub 2018 Jan 9.
[100] Viet SM, Dellarco M, Dearborn DG, Neitzel R. Assessment of Noise Exposure to Children: Considerations for the National Children's Study. J Pregnancy Child Health. 2014 Oct;1(1). pii: 105.
[101] Klatte M, Bergström K, Lachmann T. Does noise affect learning? A short review on noise effects on cognitive performance in children. Front Psychol. 2013 Aug 30;4:578. doi: 10.3389/fpsyg.2013.00578.
[102] Regecová V, Kellerová E. Effects of urban noise pollution on blood pressure and heart rate in preschool children. J Hypertens. 1995 Apr;13(4):405-12.
[103] Weyde KV, Krog NH, ... Aasvang GM. Road traffic noise and children's inattention. Environ Health. 2017 Nov 21;16(1):127. doi: 10.1186/s12940-017-0337-y.
[104] Hjortebjerg D, Andersen AM, ... Sørensen M. Exposure to Road Traffic Noise and Behavioral Problems in 7-Year-Old Children: A Cohort Study. Environ Health Perspect. 2016 Feb;124(2):228-34. doi: 10.1289/ehp.1409430. Epub 2015 Jun 30.
[105] van Kempen E, van Kamp I, ... Stansfeld S. Noise exposure and children's blood pressure and heart rate: the RANCH project. Occup Environ Med. 2006 Sep;63(9):632-9. Epub 2006 May 25.
[106] Bilenko N, van Rossem L, ... Gehring U. Traffic-related air pollution and noise and children's blood pressure: results from the PIAMA birth cohort study. Eur J Prev Cardiol. 2015 Jan;22(1):4-12. doi: 10.1177/2047487313505821. Epub 2013 Sep 18.
[107] Shield BM, Dockrell JE. The effects of environmental and classroom noise on the academic attainments of primary school children. J Acoust Soc Am. 2008 Jan;123(1):133-44. doi: 10.1121/1.2812596.
[108] Thakur N, Batra P, Gupta P. Noise as a Health Hazard for Children, Time to Make a Noise about it. Indian Pediatr. 2016 Feb;53(2):111-4.
[109] Evans GW, Lercher P, Meis M, Ising H, Kofler WW. Community noise exposure and stress in children. J Acoust Soc Am. 2001 Mar;109(3):1023-7.
[110] Nicolas A, Bach V, ... Libert JP. Electroencephalogram and cardiovascular responses to noise during daytime sleep in shiftworkers. Eur J Appl Physiol Occup Physiol. 1993;66(1):76-84.
[111] Carter N, Henderson R, Lal S, Hart M, Booth S, Hunyor S. Cardiovascular and autonomic response to environmental noise during sleep in night shift workers. Sleep. 2002 Jun 15;25(4):457-64.
[112] Rizk SA, Sharaf NE, Mahdy-Abdallah H, ElGelil KS. Some health effects of aircraft noise with special reference to shift work. Toxicol Ind Health. 2016 Jun;32(6):961-7. doi: 10.1177/0748233713518602. Epub 2014 Jan 23.
[113] Münzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of environmental noise exposure. Eur Heart J. 2014 Apr;35(13):829-36. doi: 10.1093/eurheartj/ehu030. Epub 2014 Mar 9.
[114] Basner M, McGuire S. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Effects on Sleep. Int J Environ Res Public Health. 2018 Mar 14;15(3). pii: E519. doi: 10.3390/ijerph15030519.
[115] Pearsons K., Barber D, Tabachnick BG, Fidell S. Predicting noise-induced sleep disturbance. J. Acoust. Soc. Am. 1995;97:331–338. doi: 10.1121/1.412316
[116] Muzet A. Environmental noise, sleep and health. Sleep Med Rev. 2007 Apr;11(2):135-42. Epub 2007 Feb 20.
[117] Omlin S, Bauer GF, Brink M. Effects of noise from non-traffic-related ambient sources on sleep: review of the literature of 1990-2010. Noise Health. 2011 Jul-Aug;13(53):299-309. doi: 10.4103/1463-1741.82963.
[118] Agnew HW, Webb WB, Williams RL. The first night effect: an EEG study of sleep. Psychophysiology. 1966 Jan;2(3):263-6.
[119] Schlittmeier SJ, Feil A, Liebl A, Hellbr Ck. The impact of road traffic noise on cognitive performance in attention-based tasks depends on noise level even within moderate-level ranges. Noise Health. 2015 May-Jun;17(76):148-57. doi: 10.4103/1463-1741.155845.
[120] Alimohammadi I, Soltani R, Sandrock S, Azkhosh M, Gohari MR. The effects of road traffic noise on mental performance. Iranian J Environ Health Sci Eng. 2013 Feb 9;10(1):18. doi: 10.1186/1735-2746-10-18.
[121] Wright BA, Peters ER, Ettinger U, Kuipers E, Kumari V. Moderators of noise-induced cognitive change in healthy adults. Noise Health. 2016 May-Jun;18(82):117-32. doi: 10.4103/1463-1741.181995.
[122] Clark C, Paunovic K. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cognition. Int J Environ Res Public Health. 2018 Feb 7;15(2). pii: E285. doi: 10.3390/ijerph15020285.
[123] Stansfeld S, Clark C. Health Effects of Noise Exposure in Children. Curr Environ Health Rep. 2015 Jun;2(2):171-8. doi: 10.1007/s40572-015-0044-1.
[124] Clark C, Sörqvist P. A 3 year update on the influence of noise on performance and behavior. Noise Health. 2012 Nov-Dec;14(61):292-6. doi: 10.4103/1463-1741.104896.
[125] Klatte M, Bergström K, Lachmann T. Does noise affect learning? A short review on noise effects on cognitive performance in children. Front Psychol. 2013 Aug 30;4:578. doi: 10.3389/fpsyg.2013.00578.
[126] Hygge S, Kjellberg A. Special issue on noise, memory and learning. Noise Health. 2010 Oct-Dec;12(49):199-200. doi: 10.4103/1463-1741.70495.
[127] van Kamp I, Davies H. Noise and health in vulnerable groups: a review. Noise Health. 2013 May-Jun;15(64):153-9. doi: 10.4103/1463-1741.112361.
[128] Evans G., Lepore S. Non-auditory effects of noise on children: A critical review. Child. Environ. 1993;10:42–72
[129] Evans G.W., Stecker R. Motivational consequences of environmental stress. J. Environ. Psychol. 2004;24:143–165. doi: 10.1016/S0272-4944(03)00076-8.
[130] Haines MM, Stansfeld SA, Job RF, Berglund B, Head J. A follow-up study of effects of chronic aircraft noise exposure on child stress responses and cognition. Int J Epidemiol. 2001 Aug;30(4):839-45.
[131] Hygge S, Evans GW, Bullinger M. A prospective study of some effects of aircraft noise on cognitive performance in schoolchildren. Psychol Sci. 2002 Sep;13(5):469-74.
[132] Seabi J, Cockcroft K, Goldschagg P, Greyling M. A prospective follow-up study of the effects of chronic aircraft noise exposure on learners' reading comprehension in South Africa. J Expo Sci Environ Epidemiol. 2015 Jan;25(1):84-8. doi: 10.1038/jes.2013.71. Epub 2013 Oct 30.
[133] Haines MM1, Stansfeld SA, Job RF, Berglund B, Head J. Chronic aircraft noise exposure, stress responses, mental health and cognitive performance in school children. Psychol Med. 2001 Feb;31(2):265-77.
[134] Seabi J1, Cockcroft K, Goldschagg P, Greyling M. The impact of aircraft noise exposure on South African children's reading comprehension: the moderating effect of home language. Noise Health. 2012 Sep-Oct;14(60):244-52. doi: 10.4103/1463-1741.102963.
[135] Shield BM, Dockrell JE. The effects of environmental and classroom noise on the academic attainments of primary school children. J Acoust Soc Am. 2008 Jan;123(1):133-44. doi: 10.1121/1.2812596.
[136] Alimohammadi I, Zokaei M, Sandrock S. The Effect of Road Traffic Noise on Reaction Time. Health Promot Perspect. 2015 Oct 25;5(3):207-14. doi: 10.15171/hpp.2015.025. eCollection 2015.
[137] Wu J, Qi Z, Voit EO. Impact of delays and noise on dopamine signal transduction. In Silico Biol. 2010;10(1):67-80. doi: 10.3233/ISB-2010-0413.
[138] Ravindran R, Rathinasamy SD, Samson J, Senthilvelan M. Noise-stress-induced brain neurotransmitter changes and the effect of Ocimum sanctum (Linn) treatment in albino rats. J Pharmacol Sci. 2005 Aug;98(4):354-60.
[139] Yoon JH, Won JU, Lee W, Jung PK, Roh J. Occupational noise annoyance linked to depressive symptoms and suicidal ideation: a result from nationwide survey of Korea. PLoS One. 2014 Aug 21;9(8):e105321. doi: 10.1371/journal.pone.0105321. eCollection 2014.
[140] Orban E, McDonald K,... Moebus S. Residential Road Traffic Noise and High Depressive Symptoms after Five Years of Follow-up: Results from the Heinz Nixdorf Recall Study. Environ Health Perspect. 2016 May;124(5):578-85. doi: 10.1289/ehp.1409400. Epub 2015 Nov 25.
[141] Tzivian L, Dlugaj M, ... Heinz Nixdorf Recall study Investigative Group. Long-Term Air Pollution and Traffic Noise Exposures and Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the Heinz Nixdorf Recall Study. Environ Health Perspect. 2016 Sep;124(9):1361-8. doi: 10.1289/ehp.1509824. Epub 2016 Feb 5.
[142] Méline J, Van Hulst A, Thomas F, Karusisi N, Chaix B. Transportation noise and annoyance related to road traffic in the French RECORD study. Int J Health Geogr. 2013 Oct 2;12:44. doi: 10.1186/1476-072X-12-44.
[143] Hammersen F, Niemann H, Hoebel J. Environmental Noise Annoyance and Mental Health in Adults: Findings from the Cross-Sectional German Health Update (GEDA) Study 2012. Int J Environ Res Public Health. 2016 Sep 26;13(10). pii: E954.
[144] Barceló MA, Varga D, ... Saez M.Long term effects of traffic noise on mortality in the city of Barcelona, 2004-2007. Environ Res. 2016 May;147:193-206. doi: 10.1016/j.envres.2016.02.010. Epub 2016 Feb 16.
[145] Stansfeld SA. Noise, noise sensitivity and psychiatric disorder: epidemiological and psychophysiological studies. Psychol Med Monogr Suppl. 1992;22:1-44.
[146] Stansfeld SA, Matheson MP. Noise pollution: non-auditory effects on health. Br Med Bull. 2003;68:243-57.
[147] Min JY, Min KB. Night noise exposure and risk of death by suicide in adults living in metropolitan areas. Depress Anxiety. 2018 Jun 28. doi: 10.1002/da.22789.
[148] Seidler A, Hegewald J, ... Zeeb H. Association between aircraft, road and railway traffic noise and depression in a large case-control study based on secondary data. Environ Res. 2017 Jan;152:263-271. doi: 10.1016/j.envres.2016.10.017. Epub 2016 Nov 3.
[149] Park J, Chung S, ... Sim CS. Noise sensitivity, rather than noise level, predicts the non-auditory effects of noise in community samples: a population-based survey. BMC Public Health. 2017 Apr 12;17(1):315. doi: 10.1186/s12889-017-4244-5.
[150] Krefis AC, Albrecht M, ... Augustin J. Multivariate Analysis of Noise, Socioeconomic and Sociodemographic Factors and their Association with Depression on Borough Level in the City State of Hamburg, Germany. Journal of Depression and Therapy 1(4) 2017.
[151] Shepherd D, Heinonen-Guzejev M, Hautus MJ, Heikkilä K. Elucidating the relationship between noise sensitivity and personality. Noise Health. 2015 May-Jun;17(76):165-71. doi: 10.4103/1463-1741.155850.
[152] Standing L, Stace G. The effects of environmental noise on anxiety level. J Gen Psychol. 1980 Oct;103(2d Half):263-72.
[153] Edsell RD. Anxiety as a function of environmental noise and social interaction. J Psychol. 1976 Mar;92(2d Half):219-26.
[154] Muppa R1, Bhupatiraju P, ... Panthula P. Comparison of anxiety levels associated with noise in the dental clinic among children of age group 6-15 years. Noise Health. 2013 May-Jun;15(64):190-3. doi: 10.4103/1463-1741.112371.
[155] Standing L, Lynn D, Moxness K. Effects of noise upon introverts and extroverts. Bulletin of the Psychonomic Society August 1990, Volume 28, Issue 2, pp 138–140.
[156] Moran SV, Gunn WJ, Loeb M. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community. J Aud Res. 1981 Oct;21(3):217-25.
[157] Taylor S. Misophonia: A new mental disorder? Med Hypotheses. 2017 Jun;103:109-117. doi: 10.1016/j.mehy.2017.05.003. Epub 2017 May 3.
[158] Boman E, Enmarker I, Hygge S. Strength of noise effects on memory as a function of noise source and age. Noise Health. 2005 Apr-Jun;7(27):11-26.
[159] Srivastava MK. Why psychiatric patients are intolerant to noise: a theoretical view. Indian J Psychiatry. 2002 Jan;44(1):84.
[160] Hardoy MC, Carta MG, ... Carpiniello B. Exposure to aircraft noise and risk of psychiatric disorders: the Elmas survey--aircraft noise and psychiatric disorders. Soc Psychiatry Psychiatr Epidemiol. 2005 Jan;40(1):24-6.
[161] de Deus JL, Cunha AOS, ... Leão RM. A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats. Sci Rep. 2017 Oct 26;7(1):14094. doi: 10.1038/s41598-017-14624-1.
[162] Andringa TC1, Lanser JJ. How pleasant sounds promote and annoying sounds impede health: a cognitive approach. Int J Environ Res Public Health. 2013 Apr 8;10(4):1439-61. doi: 10.3390/ijerph10041439.
[163] Münzel T, Sørensen M, ... Daiber A. The Adverse Effects of Environmental Noise Exposure on Oxidative Stress and Cardiovascular Risk. Antioxid Redox Signal. 2018 Mar 20;28(9):873-908. doi: 10.1089/ars.2017.7118.
[164] Chi JS, Kloner RA. Stress and myocardial infarction. Heart. 2003 May;89(5):475-6.
[165] Arnold SV, Smolderen KG, Buchanan DM, Li Y, Spertus JA. Perceived stress in myocardial infarction: long-term mortality and health status outcomes. J Am Coll Cardiol. 2012 Oct 30;60(18):1756-63. doi: 10.1016/j.jacc.2012.06.044. Epub 2012 Oct 3.
[166] Andringa T., Lanser J. Sound Annoyance as Loss of Options for Viability Self-Regulation; Proceesings of the 10th International Congress on Noise as a Public Health Problem (ICBEN) 2011; London, UK. 24–28 July 2011; pp. 898–905
[167] Guastavino C., Katz B., Polack J., Levitin D., Dubois D. Ecological validity of soundscape reproduction. Acta Acust. United Ac. 2005;91:333–341.
[168] Job RF. Noise sensitivity as a factor influencing human reaction to noise. Noise Health. 1999;1(3):57-68.
[169] Babisch W. The Noise/Stress Concept, Risk Assessment and Research Needs. Noise Health. 2002;4(16):1-11.
[170] Arnsten AF, Goldman-Rakic PS. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry. 1998 Apr;55(4):362-8.
[171] Wright B, Peters E, ... Kumari V. Understanding noise stress-induced cognitive impairment in healthy adults and its implications for schizophrenia. Noise Health. 2014 May-Jun;16(70):166-76. doi: 10.4103/1463-1741.134917.
[172] Hockey G. Effect of loud noise on attentional selectivity. Q J Exp Psychol 1970;22:28-36.
[173] Kehoe EG, Toomey JM, Balsters JH, Bokde AL. Personality modulates the effects of emotional arousal and valence on brain activation. Soc Cogn Affect Neurosci. 2012 Oct;7(7):858-70. doi: 10.1093/scan/nsr059. Epub 2011 Sep 23.
[174] Belojevic G, Jakovljevic B. Factors influencing subjective noise sensitivity in an urban population. Noise Health 2001;4:17-24.
[175] lian E, Thomas JR. The effects of noise, cognitive set and gender on mental arithmetic performance. Br J Psychol 1986;77:503-11.
[176] Hambrick-Dixon PJ. The effect of elevated subway train noise over time on black children′s visual vigilance performance. J Environ Psychol 1988;8:299-314.
[177] Kahneman D. Attention and Effort. Englewood Cliffs, NJ: Prentice-Hall; 1973.
[178] Ballard JC. Assessing attention: comparison of response-inhibition and traditional continuous performance tests. J Clin Exp Neuropsychol. 2001 Jun;23(3):331-50.
[179] Tregellas JR, Ellis J, Shatti S, Du YP, Rojas DC. Increased hippocampal, thalamic, and prefrontal hemodynamic response to an urban noise stimulus in schizophrenia. Am J Psychiatry 2009;166:354-60.
[180] Krabbendam L, van Os J. Schizophrenia and urbanicity: A major environmental influence - Conditional on genetic risk. Schizophr Bull 2005;31:795-9.
[181] Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 1978;15:339-43.
[182] Lincoln TM, Peter N, Schäfer M, Moritz S. Impact of stress on paranoia: An experimental investigation of moderators and mediators. Psychol Med 2009;39:1129-39.
[183] Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009 Jun;10(6):410-22. doi: 10.1038/nrn2648.
[184] Hori S, Mori K, Mashimo T, Seiyama A. Effects of Light and Sound on the Prefrontal Cortex Activation and Emotional Function: A Functional Near-Infrared Spectroscopy Study. Front Neurosci. 2017 Jun 9;11:321. doi: 10.3389/fnins.2017.00321. eCollection 2017.
[185] Plakke B, Romanski LM. Auditory connections and functions of prefrontal cortex. Front Neurosci. 2014 Jul 23;8:199. doi: 10.3389/fnins.2014.00199. eCollection 2014.
[186] Manikandan S, Padma MK, ... Sheela Devi R. Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical-imbalance in hippocampus and medial prefrontal cortex. Neurosci Lett. 2006 May 15;399(1-2):17-22. Epub 2006 Feb 14.
[187] Shansky RM, Lipps J. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex. Front Hum Neurosci. 2013 Apr 5;7:123. doi: 10.3389/fnhum.2013.00123. eCollection 2013.
[188] Mansouri FA, Acevedo N,... Jaberzadeh S. Interactive effects of music and prefrontal cortex stimulation in modulating response inhibition. Sci Rep. 2017 Dec 22;7(1):18096. doi: 10.1038/s41598-017-18119-x.
[189] Ferreri L, Bigand E, ... Bugaiska A. Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study. Front Hum Neurosci. 2014 May 12;8:301. doi: 10.3389/fnhum.2014.00301. eCollection 2014.
[190] Arjmand HA, Hohagen J, Paton B, Rickard NS. Emotional Responses to Music: Shifts in Frontal Brain Asymmetry Mark Periods of Musical Change. Front Psychol. 2017 Dec 4;8:2044. doi: 10.3389/fpsyg.2017.02044. eCollection 2017.
[191] Kazi AI, Oommen A. Chronic noise stress-induced alterations of glutamate and gamma-aminobutyric acid and their metabolism in the rat brain. Noise Health. 2014 Nov-Dec;16(73):343-9. doi: 10.4103/1463-1741.144394.
[192] Kou ZZ, Qu J, Zhang DL, Li H, Li YQ. Noise-induced hearing loss is correlated with alterations in the expression of GABAB receptors and PKC gamma in the murine cochlear nucleus complex. Front Neuroanat. 2013 Jul 30;7:25. doi: 10.3389/fnana.2013.00025. eCollection 2013.
[193] Flamme GA, Stephenson MR, ... McGregor K. Typical noise exposure in daily life. Int J Audiol. 2012 Feb;51 Suppl 1:S3-11. doi: 10.3109/14992027.2011.635316.
[194] Johnson DL, Farina ER. Description of the measurement of an individual's continuous sound exposure during a 31-day period. J Acoust Soc Am. 1977 Dec;62(6):1431-5.
[195] Neitzel R, Seixas N, Goldman B, Daniell W. Contributions of non-occupational activities to total noise exposure of construction workers. Ann Occup Hyg. 2004 Jul;48(5):463-73. Epub 2004 Jul 8.
[196] Kock S, Andersen T, ... Bonde JP. Surveillance of noise exposure in the Danish workplace: a baseline survey. Occup Environ Med. 2004 Oct;61(10):838-43.
[197] Stansfeld S, Haines M, Brown B. Noise and health in the urban environment. Rev Environ Health. 2000 Jan-Jun;15(1-2):43-82.
[198] van Kempen E, Babisch W. The quantitative relationship between road traffic noise and hypertension: a meta-analysis. J Hypertens. 2012 Jun;30(6):1075-86. doi: 10.1097/HJH.0b013e328352ac54.
[199] Sørensen M, Andersen ZJ, ... Raaschou-Nielsen O. Road traffic noise and incident myocardial infarction: a prospective cohort study. PLoS One. 2012;7(6):e39283. doi: 10.1371/journal.pone.0039283. Epub 2012 Jun 20.
[200] Verbeek JH, Kateman E, Morata TC, Dreschler WA, Mischke C.Interventions to prevent occupational noise-induced hearing loss. Cochrane Database Syst Rev. 2012 Oct 17;10:CD006396. doi: 10.1002/14651858.CD006396.pub3.
[201] Smith PA, Davis A, Ferguson M, Lutman ME. The prevalence and type of social noise exposure in young adults in England. Noise Health. 2000;2(6):41-56.
[202] Davis A, Smith P, ... Gianopoulos I. Acceptability, benefit and costs of early screening for hearing disability: a study of potential screening tests and models. Health Technol Assess. 2007 Oct;11(42):1-294.
[203] van Kempen EE, Kruize H, ... de Hollander AE. The association between noise exposure and blood pressure and ischemic heart disease: a meta-analysis. Environ Health Perspect. 2002 Mar;110(3):307-17.
[204] Huss A, Spoerri A, Egger M, Röösli M; Swiss National Cohort Study Group. Aircraft noise, air pollution, and mortality from myocardial infarction. Epidemiology. 2010 Nov;21(6):829-36. doi: 10.1097/EDE.0b013e3181f4e634.
[205] Busch-Vishniac IJ, West JE, ... Chivukula R. Noise levels in Johns Hopkins Hospital. J Acoust Soc Am. 2005 Dec;118(6):3629-45.
[206] Kim A, Sung JH, Bang JH, Cho SW, Lee J, Sim CS. Effects of self-reported sensitivity and road-traffic noise levels on the immune system. PLoS One. 2017 Oct 30;12(10):e0187084. doi: 10.1371/journal.pone.0187084. eCollection 2017.
[207] Meyer T, Wirtz PH. Mechanisms of Mitochondrial Redox Signaling in Psychosocial Stress-Responsive Systems: New Insights into an Old Story. Antioxid Redox Signal. 2018 Mar 20;28(9):760-772. doi: 10.1089/ars.2017.7186. Epub 2017 Jul 19.
[208] Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003 Aug;24(8):444-8.
[209] Hartono. Cortisol level decreases natural killer cell activity among women exposed to aircraft noise. Universa medicina. 2010;29(3):153–6
[210] Pascuan CG, Uran SL, ... Genaro AM. Immune alterations induced by chronic noise exposure: comparison with restraint stress in BALB/c and C57Bl/6 mice. J Immunotoxicol. 2014 Jan-Mar;11(1):78-83. doi: 10.3109/1547691X.2013.800171. Epub 2013 Jun 7.
[211] Prasher D. Is there evidence that environmental noise is immunotoxic? Noise Health. 2009 Jul-Sep;11(44):151-5. doi: 10.4103/1463-1741.53361.
[212] Sundareswaran L, Srinivasan S, Wankhar W, Sheeladevi R. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats. J Ayurveda Integr Med. 2017 Jan - Mar;8(1):13-19. doi: 10.1016/j.jaim.2016.10.004. Epub 2017 Feb 1.
[213] Sobrian SK, Vaughn VT, ... Jankovic BD. Gestational exposure to loud noise alters the development and postnatal responsiveness of humoral and cellular components of the immune system in offspring. Environ Res. 1997;73(1-2):227-41.
[214] Münzel T, Daiber A, ... Kröller-Schön S. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. Eur Heart J. 2017 Oct 1;38(37):2838-2849. doi: 10.1093/eurheartj/ehx081.
[215] Liu YZ, Wang YX, Jiang CL. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci. 2017 Jun 20;11:316. doi: 10.3389/fnhum.2017.00316. eCollection 2017.
[216] Dzhambov AM, Dimitrova DD. Exposure-response relationship between traffic noise and the risk of stroke: a systematic review with meta-analysis. Arh Hig Rada Toksikol. 2016 Jun 1;67(2):136-51. doi: 10.1515/aiht-2016-67-2751.
[217] Stokholm ZA1, Bonde JP, Christensen KL, Hansen AM, Kolstad HA. Occupational noise exposure and the risk of stroke. Stroke. 2013 Nov;44(11):3214-6. doi: 10.1161/STROKEAHA.113.002798. Epub 2013 Aug 29.
[218] Sørensen M, Lühdorf P, ... Raaschou-Nielsen O. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? Environ Res. 2014 Aug;133:49-55. doi: 10.1016/j.envres.2014.05.011. Epub 2014 Jun 4.
[219] Vandasova Z, Vencálek O, Puklová V. Specific and combined subjective responses to noise and their association with cardiovascular diseases. Noise Health. 2016 Nov-Dec;18(85):338-346. doi: 10.4103/1463-1741.195800.
[220] Sørensen M, Hvidberg M, ... Raaschou-Nielsen O. Road traffic noise and stroke: a prospective cohort study. Eur Heart J. 2011 Mar;32(6):737-44. doi: 10.1093/eurheartj/ehq466. Epub 2011 Jan 25.
[221] Halonen JI, Hansell AL,... Tonne C. Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London. Eur Heart J. 2015 Oct 14;36(39):2653-61. doi: 10.1093/eurheartj/ehv216. Epub 2015 Jun 23.
[222] Eggertsen R, Svensson A, Magnusson M, Andrén L. Hemodynamic effects of loud noise before and after central sympathetic nervous stimulation. Acta Med Scand. 1987;221(2):159-64.
[223] Evrard AS, Bouaoun L, Champelovier P, Lambert J, Laumon B. Does exposure to aircraft noise increase the mortality from cardiovascular disease in the population living in the vicinity of airports? Results of an ecological study in France. Noise Health. 2015 Sep-Oct;17(78):328-36. doi: 10.4103/1463-1741.165058.
[224] Dzhambov AM. Long-term noise exposure and the risk for type 2 diabetes: a meta-analysis. Noise Health. 2015 Jan-Feb;17(74):23-33. doi: 10.4103/1463-1741.149571.
[225] Hodgson MJ, Talbott E, Helmkamp JC, Kuller LH. Diabetes, noise exposure, and hearing loss. J Occup Med. 1987 Jul;29(7):576-9.
[226] Eze IC, Foraster M, ... Probst-Hensch N. Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA study. Int J Epidemiol. 2017 Aug 1;46(4):1115-1125. doi: 10.1093/ije/dyx020.
[227] Liu L, Huang Y, ... Wang J. Chronic noise-exposure exacerbates insulin resistance and promotes the manifestations of the type 2 diabetes in a high-fat diet mouse model. PLoS One. 2018 Mar 30;13(3):e0195411. doi: 10.1371/journal.pone.0195411. eCollection 2018.
[228] Dzhambov AM. Exposure to self-reported occupational noise and diabetes - A cross-sectional relationship in 7th European Social Survey (ESS7, 2014). Int J Occup Med Environ Health. 2017 Jun 19;30(4):537-551. doi: 10.13075/ijomeh.1896.00885. Epub 2017 Apr 14.
[229] Sørensen M, Andersen ZJ, ... Raaschou-Nielsen O. Long-term exposure to road traffic noise and incident diabetes: a cohort study. Environ Health Perspect. 2013 Feb;121(2):217-22. doi: 10.1289/ehp.1205503. Epub 2012 Dec 10.
[230] Clark C, Sbihi H, ... Davies HW. Association of Long-Term Exposure to Transportation Noise and Traffic-Related Air Pollution with the Incidence of Diabetes: A Prospective Cohort Study. Environ Health Perspect. 2017 Aug 31;125(8):087025. doi: 10.1289/EHP1279.
[231] Eriksson C, Hilding A, ... Östenson CG. Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study. Environ Health Perspect. 2014 Jul;122(7):687-94. doi: 10.1289/ehp.1307115. Epub 2014 May 5.
[232] Weyde KV, Krog NH, ... Aasvang GM. A Longitudinal Study of Road Traffic Noise and Body Mass Index Trajectories from Birth to 8 Years. Epidemiology. 2018 Sep;29(5):729-738. doi: 10.1097/EDE.0000000000000868.
[233] Kelishadi R, Poursafa P, Keramatian K. Overweight, air and noise pollution: Universal risk factors for pediatric pre-hypertension. J Res Med Sci. 2011 Sep;16(9):1234-50.
[234] Smith RB, Fecht D ... Toledano MB. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study. BMJ. 2017 Dec 5;359:j5299. doi: 10.1136/bmj.j5299.
[235] Liu L, Wang F, ... Wang J. Effects of Noise Exposure on Systemic and Tissue-Level Markers of Glucose Homeostasis and Insulin Resistance in Male Mice. Environ Health Perspect. 2016 Sep;124(9):1390-8. doi: 10.1289/EHP162. Epub 2016 Apr 29.
[236] Helzner EP, Patel AS... Newman AB. Hearing sensitivity in older adults: associations with cardiovascular risk factors in the health, aging and body composition study. J Am Geriatr Soc. 2011 Jun;59(6):972-9. doi: 10.1111/j.1532-5415.2011.03444.x. Epub 2011 Jun 7.
[237] Heinonen-Guzejev M, Vuorinen HS, ... Kaprio J. Genetic component of noise sensitivity, twin research on human genetics. Twin Res Hum Genet. 2005;8:245-9.
[238] Ryu JK, Jeon JY. Influence of noise sensitivity on annoyance of indoor and outdoor noises in residential buildings. Appl Acoust 2011;72:336-40.
[239] Becher R, Øvrevik J,... Bakke JV. Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review. Int J Environ Res Public Health. 2018 Jan 23;15(2). pii: E184. doi: 10.3390/ijerph15020184.
[240] Pope DS, Miller-Klein ET. Acoustic assessment of speech privacy curtains in two nursing units. Noise Health. 2016 Jan-Feb;18(80):26-35. doi: 10.4103/1463-1741.174377.
[241] Farrehi PM, Nallamothu BK, Navvab M. Reducing hospital noise with sound acoustic panels and diffusion: a controlled study. BMJ Qual Saf. 2016 Aug;25(8):644-6. doi: 10.1136/bmjqs-2015-004205. Epub 2015 Jul 24.
[242] Zhu H, Rajamani R, Stelson KA. Active control of acoustic reflection, absorption, and transmission using thin panel speakers. J Acoust Soc Am. 2003 Feb;113(2):852-70.
[243] Amlani AM1, Russo TA. Negative Effect of Acoustic Panels on Listening Effort in a Classroom Environment. J Am Acad Audiol. 2016 Nov/Dec;27(10):805-815.
[244] Lee JY, Kim JM. Deflection of resilient materials for reduction of floor impact sound. ScientificWorldJournal. 2014;2014:612608. doi: 10.1155/2014/612608. Epub 2014 Oct 28.
[245] Spencer JA, Moran DJ, Lee A, Talbert D. White noise and sleep induction. Arch Dis Child. 1990 Jan;65(1):135-7.
[246] Stanchina ML, Abu-Hijleh M, ... Millman RP. The influence of white noise on sleep in subjects exposed to ICU noise. Sleep Med. 2005 Sep;6(5):423-8. Epub 2005 Mar 31.
[247] Farokhnezhad Afshar P, Bahramnezhad F, Asgari P, Shiri M. Effect of White Noise on Sleep in Patients Admitted to a Coronary Care. J Caring Sci. 2016 Jun 1;5(2):103-9. doi: 10.15171/jcs.2016.011. eCollection 2016.
[248] Scott TD. The effects of continuous, high intensity, white noise on the human sleep cycle. Psychophysiology. 1972 Mar;9(2):227-32.
[249] Xie H, Kang J, Mills GH. Clinical review: The impact of noise on patients' sleep and the effectiveness of noise reduction strategies in intensive care units. Crit Care. 2009;13(2):208. doi: 10.1186/cc7154. Epub 2009 Mar 9.
[250] Hugh SC, Wolter NE, Propst EJ, Gordon KA, Cushing SL, Papsin BC. Infant sleep machines and hazardous sound pressure levels. Pediatrics. 2014 Apr;133(4):677-81. doi: 10.1542/peds.2013-3617. Epub 2014 Mar 3.
[251] Mazurek B, Stöver T, ... Sczepek AJ. The significance of stress: its role in the auditory system and the pathogenesis of tinnitus. HNO. 2010 Feb;58(2):162-72. doi: 10.1007/s00106-009-2001-5.
[252] Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res. 2012 Jun;288(1-2):34-46. doi: 10.1016/j.heares.2012.02.009. Epub 2012 Mar 7.
[253] Park S, Lee J... Choi S. Sound tuning of amygdala plasticity in auditory fear conditioning. Sci Rep. 2016 Aug 4;6:31069. doi: 10.1038/srep31069.
[254] Spreng M. Central nervous system activation by noise. Noise Health. 2000;2(7):49-58.
[255] Yu JF, Lee KC, ... Peng YC. Human amygdala activation by the sound produced during dental treatment: A fMRI study. Noise Health. 2015 Sep-Oct;17(78):337-42. doi: 10.4103/1463-1741.165063.
[256] Chen GD, Sheppard A, Salvi R. Noise trauma induced plastic changes in brain regions outside the classical auditory pathway. Neuroscience. 2016 Feb 19;315:228-45. doi: 10.1016/j.neuroscience.2015.12.005. Epub 2015 Dec 14.
[257] Sander K, Brechmann A, Scheich H. Audition of laughing and crying leads to right amygdala activation in a low-noise fMRI setting. Brain Res Brain Res Protoc. 2003 May;11(2):81-91.
[258] Day HE, Nebel S, Sasse S, Campeau S. Inhibition of the central extended amygdala by loud noise and restraint stress. Eur J Neurosci. 2005 Jan;21(2):441-54.
[259] Simon D, Becker M, Mothes-Lasch M, Miltner WH, Straube T. Loud and angry: sound intensity modulates amygdala activation to angry voices in social anxiety disorder. Soc Cogn Affect Neurosci. 2017 Mar 1;12(3):409-416. doi: 10.1093/scan/nsw131.
[260] Westman JC, Walters JR. Noise and stress: a comprehensive approach. Environ Health Perspect. 1981 Oct;41:291-309.
[261] Fouladi DB1, Nassiri P,... Hoseini M. Industrial noise exposure and salivary cortisol in blue collar industrial workers. Noise Health. 2012 Jul-Aug;14(59):184-9. doi: 10.4103/1463-1741.99894.
[262] Rupia EJ, Binning SA, Roche DG, Lu W. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish. J Anim Ecol. 2016 Jul;85(4):927-37. doi: 10.1111/1365-2656.12524. Epub 2016 May 16.
[263] Goligorsky MS. The concept of cellular "fight-or-flight" reaction to stress. Am J Physiol Renal Physiol. 2001 Apr;280(4):F551-61.
[264] Huang CM, Liu G, Huang R. Projections from the cochlear nucleus to the cerebellum. Brain Res. 1982 Jul 22;244(1):1-8.
[265] Kulesza RJ Jr. Cytoarchitecture of the human superior olivary complex: nuclei of the trapezoid body and posterior tier. Hear Res. 2008 Jul;241(1-2):52-63. doi: 10.1016/j.heares.2008.04.010. Epub 2008 May 10.
[266] Kulesza RJ Jr, Grothe B. Yes, there is a medial nucleus of the trapezoid body in humans. Front Neuroanat. 2015 Mar 31;9:35. doi: 10.3389/fnana.2015.00035. eCollection 2015.
[267] Gu JW, Herrmann BS, Levine RA, Melcher JR. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol. 2012 Dec;13(6):819-33. doi: 10.1007/s10162-012-0344-1. Epub 2012 Aug 7.
[268] Purves D, Augustine GJ, Fitzpatrick D. Integration in the Inferior Colliculus. Neuroscience 2nd Edition. Sunderland (MA): Sinauer Associates; 2001.
[269] Ferrara NC, Cullen PK, ... Helmstetter FJ. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination. Learn Mem. 2017 Aug 16;24(9):414-421. doi: 10.1101/lm.044131.116. Print 2017 Sep.
[270] Lütkenhöner B, Krumbholz K, ... Patterson RD. Localization of primary auditory cortex in humans by magnetoencephalography. Neuroimage. 2003 Jan;18(1):58-66.
[271] Golbidi S, Li H, Laher I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid Redox Signal. 2018 Mar 20;28(9):741-759. doi: 10.1089/ars.2017.7257. Epub 2018 Jan 12.
[272] Yildirim I, Kilinc M, ... Ekerbiçer HC. The effects of noise on hearing and oxidative stress in textile workers. Ind Health. 2007 Dec;45(6):743-9.
[273] Yuan H, Wang X, ... Sha SH. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid Redox Signal. 2015 May 20;22(15):1308-24. doi: 10.1089/ars.2014.6004. Epub 2015 Mar 25.
[274] Babisch W. The Noise/Stress Concept, Risk Assessment and Research Needs. Noise Health. 2002;4(16):1-11.
[275] Hede AJ. Using mindfulness to reduce the health effects of community reaction to aircraft noise. Noise Health. 2017 Jul-Aug;19(89):165-173. doi: 10.4103/nah.NAH_106_16.
[276] Taren AA, Gianaros PJ, ... Creswell JD. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial. Soc Cogn Affect Neurosci. 2015 Dec;10(12):1758-68. doi: 10.1093/scan/nsv066. Epub 2015 Jun 5.
[277] King EA, Murphy E. Environmental noise – ‘Forgotten’ or ‘Ignored’ pollutant? Applied Acoustics Volume 112, November 2016, Pages 211-215.
[278] WHO. Burden of disease from environmental noise. Quantification of healthy life years lost in Europe. 2011.
[279] Murphy E, King E. Environmental Noise Pollution: Noise Mapping, Public Health, and Policy. 1st Edition, 2011, Elsevier.
[280] Ohrstrom, E., 1993. Research on noise since 1988: present state. In: Vallet, M. (Ed.), Proceedings of Noise and Man, ICBEN. INRETS, Nice, pp. 331–338.
[281] Vallet, M, Gagneux, J, Clairet, JM, Heart rate reactivity to aircraft noise after a long-term exposure. In: Rossi, G. (Ed.), Noise as a Public Health Problem. 1983 Centro
Recherche e Studio Amplifon, Milan, pp. 965–975.
[282] Croy I, Smith MG, Waye KP. Effects of train noise and vibration on human heart rate during sleep: an experimental study. BMJ Open. 2013 May 28;3(5). pii: e002655. doi: 10.1136/bmjopen-2013-002655.
[283] Ohrstrom, E, Rylander, R. Sleep disturbance effects of traffic noise – a laboratory study on after-effects. J. Sound Vib. 1982 84, 87–103
[284] Vernet, M. Effect of train noise for people living in houses bordering the railway line. 1979 J. Sound Vib. 66, 483–492.
[285] Kight CR, Swaddle JP. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett. 2011 Oct;14(10):1052-61. doi: 10.1111/j.1461-0248.2011.01664.x. Epub 2011 Aug 2.
[286] Laurance WF. Wildlife struggle in an increasingly noisy world. Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):11995-6. doi: 10.1073/pnas.1516050112. Epub 2015 Sep 21.
[287] Buxton RT, McKenna MF, ... Wittemyer G. Noise pollution is pervasive in U.S. protected areas. Science. 2017 May 5;356(6337):531-533. doi: 10.1126/science.aah4783.
[288] European Commission. Environment: noise pollution in the EU.
[289] Connor A, Ortiz E. Staff solutions for noise reduction in the workplace. Perm J. 2009 Fall;13(4):23-7.
[290] Pierrette M, Parizet E, Chevret P, Chatillon J. Noise effect on comfort in open-space offices: development of an assessment questionnaire. Ergonomics. 2015;58(1):96-106. doi: 10.1080/00140139.2014.961972. Epub 2014 Sep 30.
[291] Okokon EO, Turunen AW, ... Lanki T. Road-traffic noise: annoyance, risk perception, and noise sensitivity in the Finnish adult population. Int J Environ Res Public Health. 2015 May 26;12(6):5712-34. doi: 10.3390/ijerph120605712.
[292] Leventhall HG. Low frequency noise and annoyance. Noise Health. 2004 Apr-Jun;6(23):59-72.
[292] Michaud DS, Keith SE, McMurchy D. Annoyance and disturbance of daily activities from road traffic noise in Canada. J Acoust Soc Am. 2008 Feb;123(2):784-92. doi: 10.1121/1.2821984.
[293] Van Gerven PW, Vos H, ... Miedema HM. Annoyance from environmental noise across the lifespan. J Acoust Soc Am. 2009 Jul;126(1):187-94. doi: 10.1121/1.3147510.
[294] Alcántara JI, Weisblatt EJ, Moore BC, Bolton PF. Speech-in-noise perception in high-functioning individuals with autism or Asperger's syndrome. J Child Psychol Psychiatry. 2004 Sep;45(6):1107-14.
[295] Mamashli F, Khan S, ... Kenet T. Auditory processing in noise is associated with complex patterns of disrupted functional connectivity in autism spectrum disorder. Autism Res. 2017 Apr;10(4):631-647. doi: 10.1002/aur.1714. Epub 2016 Dec 2.
[296] Porges SW, Bazhenova OV, ... Lewis GF. Reducing auditory hypersensitivities in autistic spectrum disorder: preliminary findings evaluating the listening project protocol. Front Pediatr. 2014 Aug 1;2:80. doi: 10.3389/fped.2014.00080. eCollection 2014.
Get FREE Updates & EXCLUSIVE Content
Join Over 30,000+ Subscribers!